Construction of a computational mechanical model of bronchi for practical simulation of the optimal positive intrathoracic pressure conditions during general thoracic surgery

2021 ◽  
pp. 1-12
Author(s):  
Yoshikane Yamauchi ◽  
Yuichi Saito ◽  
Atsushi Yasuda ◽  
Suguru Shirai ◽  
Hiroshi Kondo ◽  
...  

BACKGROUND: Thoracic CO2 insufflation with positive intrathoracic pressure is usually effective during thoracoscopic surgery, however, lung collapse is sometimes insufficient. We hypothesized that inappropriate bronchial collapse might cause this unsuccessful lung collapse. OBJECTIVE: The objective of this study was to construct a computational mechanical model of bronchi for practical simulation to discover the optimal conditions of positive intrathoracic pressure during thoracoscopic surgery. METHODS: Micro-focus high-resolution X-ray computed tomography measurements of lungs from just-slaughtered swine were extracted, and the three-dimensional geometries of the bronchi under pressurized and depressurized conditions were measured accurately. The mechanical properties of the bronchus were also measured. Computational fluid dynamics (CFD) and computational structural mechanics (CSM) analyses were conducted. RESULTS: The CSM results indicated that the present structural model could simulate bronchial occlusion. The CFD results showed that airflows from pressed lung alveoli might cause low-internal-pressure regions when suddenly or heterogeneously pushed airflow was injected from a small branching bronchus to a large bronchus. A preliminary computational mechanical model of bronchi was constructed. CONCLUSIONS: We demonstrated the performance of the mechanical model of bronchi in rough simulations of bronchial occlusions. However, this model should be verified further using human data to facilitate its introduction to clinical use.

2021 ◽  
Author(s):  
Katherine A. Wolcott ◽  
Guillaume Chomicki ◽  
Yannick M. Staedler ◽  
Krystyna Wasylikowa ◽  
Mark Nesbitt ◽  
...  

Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


2003 ◽  
Vol 8 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Wolfgang H Stuppy ◽  
Jessica A Maisano ◽  
Matthew W Colbert ◽  
Paula J Rudall ◽  
Timothy B Rowe

2018 ◽  
Vol 139 ◽  
pp. 75-82 ◽  
Author(s):  
A.H. Galmed ◽  
A. du Plessis ◽  
S.G. le Roux ◽  
E. Hartnick ◽  
H. Von Bergmann ◽  
...  

1992 ◽  
Vol 114 (1) ◽  
pp. 79-90 ◽  
Author(s):  
O. P. Sharma ◽  
G. F. Pickett ◽  
R. H. Ni

The impacts of unsteady flow research activities on flow simulation methods used in the turbine design process are assessed. Results from experimental investigations that identify the impact of periodic unsteadiness on the time-averaged flows in turbines and results from numerical simulations obtained by using three-dimensional unsteady Computational Fluid Dynamics (CFD) codes indicate that some of the unsteady flow features can be fairly accurately predicted. Flow parameters that can be modeled with existing steady CFD codes are distinguished from those that require unsteady codes.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Weichun Wu ◽  
Yimin Wu ◽  
Gang Shen ◽  
Guofei Zhang

Abstract Background As the positions and sizes of nodules in synchronous multiple primary lung cancer (SMPLC) patients differ, the development of surgical strategies to maximize long-term survival and preserved postoperative pulmonary function in SMPLC patients for whom surgical resection is an alternative strategy presents challenges. Case presentation We provide a case managed through video-assisted thoracoscopic surgery (VATS) resection using three-dimensional computed tomography lung reconstruction (3D-CTLR) to reconstruct lobes containing pulmonary nodules to preoperatively simulate and intraoperatively guide the extent and method of resection. Conclusion The successful attempt demonstrates a technically simplified, feasible alternative to preoperative plans utilizing less invasive VATS to manage SMPLC.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the influence of various bench arrangements on the microclimate inside a two-span greenhouse is numerically investigated using three-dimensional Computational Fluid Dynamics (CFD) models. Longitudinal and peninsular arrangements are investigated for both leeward and windward opened roof ventilators. The velocity and temperature distributions at plant level (1m) were of particular interest. The research in this paper is an extension of two-dimensional work conducted previously [1]. Results indicate that bench layouts inside the greenhouse have a significant effect on the microclimate at plant level. It was found that vent opening direction (leeward or windward) influences the velocity and temperature distributions at plant level noticeably. Results also indicated that in general, the leeward facing greenhouses containing either type of bench arrangement exhibit a lower velocity distribution at plant level compared to windward facing greenhouses. The latter type of greenhouses has regions with relatively high velocities at plant level which could cause some concern. The scalar plots indicate that more stagnant areas of low velocity appear for the leeward facing greenhouses. The windward facing greenhouses also display more heterogeneity at plant level as far as temperature is concerned.


Sign in / Sign up

Export Citation Format

Share Document