A new stochastic framework for optimal generation scheduling considering wind power sources

2014 ◽  
Vol 26 (3) ◽  
pp. 1571-1579 ◽  
Author(s):  
Sajad Tabatabaei
2021 ◽  
Vol 13 (8) ◽  
pp. 4404
Author(s):  
Ji Whan Kim ◽  
Yoon Kyung Kim

This study estimated the induced effects of LNG, mega PV (photovoltaic), small PV, onshore wind and offshore wind power, which will be used as major power sources under the Korea’s energy transition policy. The 2015 Input–Output Statistics of Bank of Korea were used to reflect Korea’s economic structure. The MCI (manufacture, construction and installation) and O&M (operation and maintenance) of each power source would have different effects, so in the analysis the MCI and O&M of each power source were distinguished. According to estimation results, the induced-effect coefficients of the MCI are greater than those of the O&M in every power source. The induced production effect coefficient of the MCI is decreased in the order of mega PV > small PV > LNG power > offshore wind > onshore wind. The induced production effect coefficient of the O&M is decreased in the order of mega PV > small PV > onshore wind > offshore wind > LNG thermal. The induced employment coefficient of the MCI is decreased in the order of LNG thermal > mega PV > small PV > onshore wind > offshore wind. PV power and wind power have bigger induced effects and bring economic effects in Korean economy. The carbon neutrality and energy transition policies implemented by Korea have a certain level of induced effects and offset the burden of transition costs even if existing power sources are replaced with environmentally friendly power sources.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2375
Author(s):  
Yuwei Zhang ◽  
Wenying Liu ◽  
Yue Huan ◽  
Qiang Zhou ◽  
Ningbo Wang

The rapidly increasing penetration of wind power into sending-side systems makes the wind power curtailment problem more severe. Enhancing the total transfer capability (TTC) of the transmission channel allows more wind power to be delivered to the load center; therefore, the curtailed wind power can be reduced. In this paper, a new method is proposed to enhance TTC, which works by optimizing the day-ahead thermal generation schedules. First, the impact of thermal generation plant/unit commitment on TTC is analyzed. Based on this, the day-ahead thermal generation scheduling rules to enhance TTC are proposed herein, and the corresponding optimization models are established and solved. Then, the optimal day-ahead thermal generation scheduling method to enhance TTC is formed. The proposed method was validated on the large-scale wind power base sending-side system in Gansu Province in China; the results indicate that the proposed method can significantly enhance TTC, and therefore, reduce the curtailed wind power.


2012 ◽  
Vol 4 (6) ◽  
pp. 063119 ◽  
Author(s):  
Taher Niknam ◽  
Hamid Reza Massrur ◽  
Bahman Bahmani Firouzi

2020 ◽  
Author(s):  
Sebastian Sterl ◽  
Inne Vanderkelen ◽  
Celray James Chawanda ◽  
Nicole van Lipzig ◽  
Ann van Griensven ◽  
...  

<p>Many countries in the developing world have immense, but underexploited, renewable electricity potentials. A good example are the countries in the Economic Community of West African States (ECOWAS). Historically, renewable power generation in West Africa has focused on hydropower, which produces around 20% of the region’s overall electricity generation, with natural gas providing most of the remainder; future capacity expansion plans for the region are also focused to a large extent around gas and hydropower.</p><p> </p><p>However, dropping costs for modern renewable power sources, primarily solar photovoltaic and wind power, are expected to break the West African gas-hydro-paradigm in the near future. Given the currently low levels of generation and strongly increasing power demand in many countries, they can be seen as “greenfields” for integrating variable renewable energy (VRE) sources into stable power mixes and planning transmission capacity expansion to the benefit of VRE sources.</p><p> </p><p>Such planning requires a nuanced view of the role that different resources can play in a power mix. Solar and wind power are clean and have low environmental impact, but show pronounced diurnal and seasonal cycles, which requires increased power system flexibility across a wide range of time scales. Globally, such flexibility is currently mostly delivered by natural gas, whose use in the future must be limited to comply with the goals of the Paris Agreement. Reservoir hydropower is an alternative source of flexibility, but only if adequately managed across all involved time scales and without endangering environmental flow requirements.</p><p> </p><p>In this research, we combined energy science, meteorology, hydrology and climatology to conduct a scenario-based analysis of smart renewable expansion strategies for West Africa using the REVUB model, considering all time scales ranging from hourly to decadal (including climate change effects) and all spatial scales from point to subcontinental. We show that smart management of hydropower plants, smart designs of solar-wind mixes, and smart planning of regional interconnections can ensure reliable and stable power provision while reducing future natural gas demand and at the same time avoiding ecologically damaging hydropower overexploitation. These results have wide implications for energy policy planning far beyond West Africa, particularly in hydro-dependent developing countries.</p>


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 826 ◽  
Author(s):  
Paula Medina Maçaira ◽  
Yasmin Monteiro Cyrillo ◽  
Fernando Cyrino Oliveira ◽  
Reinaldo Castro Souza

In the past two decades, wind power’s share of the energy mix has grown significantly in Brazil. However, nowadays planning electricity operation in Brazil basically involves evaluating the future conditions of energy supply from hydro and thermal sources over the planning horizon. In this context, wind power sources are not stochastically treated. This work applies an innovative approach that incorporates wind power generation in the Brazilian hydro-thermal dispatch using the analytical method of Frequency & Duration. The proposed approach is applied to Brazil’s Northeast region, covering the planning period from July 2017 to December 2021, using the Markov chain Monte Carlo method to simulate wind power scenarios. The obtained results are more conservative than the one currently used by the National Electric System Operator, since the proposed approach forecasts 1.8% less wind generation, especially during peak periods, and 0.67% more thermal generation. This conservatism can reduce the chance of water reservoir depletion and, also an ineffective dispatch.


Sign in / Sign up

Export Citation Format

Share Document