Attribute reductions and concept lattices in interval-valued intuitionistic fuzzy rough set theory: Construction and properties

2016 ◽  
Vol 30 (2) ◽  
pp. 1231-1242 ◽  
Author(s):  
Fei Xu ◽  
Zhi-Yong Xing ◽  
Hai-Dong Yin
2017 ◽  
Vol 32 (1) ◽  
pp. 703-710 ◽  
Author(s):  
Jianhua Dai ◽  
Guojie Zheng ◽  
Huifeng Han ◽  
Qinghua Hu ◽  
Nenggan Zheng ◽  
...  

2008 ◽  
Vol 178 (13) ◽  
pp. 2794-2815 ◽  
Author(s):  
Bingzhen Sun ◽  
Zengtai Gong ◽  
Degang Chen

Author(s):  
T. K. Das

This chapter begins with a brief introduction of the theory of rough set. Rough set is an intelligent technique for handling uncertainty aspect in the data. This theory has been hybridized by combining with many other mathematical theories. In recent years, much decision making on rough set theory has been extended by embedding the ideas of fuzzy sets, intuitionistic fuzzy sets and soft sets. In this chapter, the notions of fuzzy rough set and intuitionistic fuzzy rough (IFR) sets are defined, and its properties are studied. Thereafter rough set on two universal sets has been studied. In addition, intuitionistic fuzzy rough set on two universal sets has been extensively studied. Furthermore, we would like to give an application, which shows that intuitionistic fuzzy rough set on two universal sets can be successfully applied to decision making problems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xinrui Liu ◽  
Xinying Zhao ◽  
Weiyang Zhong

Under the background of the “double high” power system, the electricity heat hydrogen system (EHHS) plays a significant role in the process of energy decarbonization. In order to meet the different optimization objectives of the system under different new energy consumption states, a new energy consumption potential assessment and optimized operation method based on intuitionistic fuzzy rough set theory is proposed. By using the intuitionistic fuzzy rough set theory, the continuous attribute data is divided into different levels and the results of its membership and non-membership are gotten at different levels. The membership results of real-time consumption data are matched with the rule sets, and then the system consumption state judgment result is obtained. In this article, the system consumption situation is divided into five states, and compared with the traditional division method, so the system state can be described more comprehensively. At the same time, the fuzzy set is used to deal with the ambiguity of the boundary between each state. The intuition theory is used to solve the problem of the uncertainty of the consumption state, and then the accurate judgment can be realized. In response to different consumption states, an optimal scheduling model is established in which a hydrogen heat energy system (HHES) is involved to meet different requirements, and a hybrid particle swarm optimization algorithm is used to solve the model. Adopting the IEEE-30 bus system as the network structure of EHHS in the simulation, the analysis shows that the dynamic state division method based on intuitionistic fuzzy rough set theory can better be used to judge the system state according to real-time variable factors. The system optimization based on the consumption state division has the advantages of improving the operating economy and increasing the consumption of new energy.


Kybernetes ◽  
2016 ◽  
Vol 45 (3) ◽  
pp. 461-473 ◽  
Author(s):  
Sun Bingzhen ◽  
Ma Weimin

Purpose – The purpose of this paper is to present a new method for evaluation of emergency plans for unconventional emergency events by using the soft fuzzy rough set theory and methodology. Design/methodology/approach – In response to the problems of insufficient risk identification, incomplete and inaccurate data and different preference of decision makers, a new model for emergency plan evaluation is established by combining soft set theory with classical fuzzy rough set theory. Moreover, by combining the TOPSIS method with soft fuzzy rough set theory, the score value of the soft fuzzy lower and upper approximation is defined for the optimal object and the worst object. Finally, emergency plans are comprehensively evaluated according to the soft close degree of the soft fuzzy rough set theory. Findings – This paper presents a new perspective on emergency management decision making in unconventional emergency events. Also, the paper provides an effective model for evaluating emergency plans for unconventional events. Originality/value – The paper contributes to decision making in emergency management of unconventional emergency events. The model is useful for dealing with decision making with uncertain information.


2008 ◽  
Vol 178 (8) ◽  
pp. 1968-1985 ◽  
Author(s):  
Zengtai Gong ◽  
Bingzhen Sun ◽  
Degang Chen

2018 ◽  
Vol 7 (2) ◽  
pp. 75-84 ◽  
Author(s):  
Shivam Shreevastava ◽  
Anoop Kumar Tiwari ◽  
Tanmoy Som

Feature selection is one of the widely used pre-processing techniques to deal with large data sets. In this context, rough set theory has been successfully implemented for feature selection of discrete data set but in case of continuous data set it requires discretization, which may cause information loss. Fuzzy rough set theory approaches have also been used successfully to resolve this issue as it can handle continuous data directly. Moreover, almost all feature selection techniques are used to handle homogeneous data set. In this article, the center of attraction is on heterogeneous feature subset reduction. A novel intuitionistic fuzzy neighborhood models have been proposed by combining intuitionistic fuzzy sets and neighborhood rough set models by taking an appropriate pair of lower and upper approximations and generalize it for feature selection, supported with theory and its validation. An appropriate algorithm along with application to a data set has been added.


Sign in / Sign up

Export Citation Format

Share Document