Recognition Memory Performance as a Cognitive Marker of Prodromal Alzheimer’s Disease

2019 ◽  
Vol 72 (2) ◽  
pp. 507-514
Author(s):  
Felicia C. Goldstein ◽  
David W. Loring ◽  
Tiffany Thomas ◽  
Sabria Saleh ◽  
Ihab Hajjar
2019 ◽  
Vol 15 ◽  
pp. P787-P787
Author(s):  
Felicia C. Goldstein ◽  
David W. Loring ◽  
Tiffany Thomas ◽  
Sabria Saleh ◽  
Ihab Hajjar

GeroPsych ◽  
2014 ◽  
Vol 27 (4) ◽  
pp. 161-169 ◽  
Author(s):  
Nienke A. Hofrichter ◽  
Sandra Dick ◽  
Thomas G. Riemer ◽  
Carsten Schleussner ◽  
Monique Goerke ◽  
...  

Hippocampal dysfunction and deficits in episodic memory have been reported for both Alzheimer’s disease (AD) and major depressive disorder (MDD). Primacy performance has been associated with hippocampus-dependent episodic memory, while recency may reflect working memory performance. In this study, serial position profiles were examined in a total of 73 patients with MDD, AD, both AD and MDD, and healthy controls (HC) by means of CERAD-NP word list memory. Primacy performance was most impaired in AD with comorbid MDD, followed by AD, MDD, and HC. Recency performance, on the other hand, was comparable across groups. These findings indicate that primacy in AD is impaired in the presence of comorbid MDD, suggesting additive performance decrements in this specific episodic memory function.


2020 ◽  
Vol 228 (4) ◽  
pp. 264-277 ◽  
Author(s):  
Evan E. Mitton ◽  
Chris M. Fiacconi

Abstract. To date there has been relatively little research within the domain of metamemory that examines how individuals monitor their performance during memory tests, and whether the outcome of such monitoring informs subsequent memory predictions for novel items. In the current study, we sought to determine whether spontaneous monitoring of test performance can in fact help individuals better appreciate their memory abilities, and in turn shape future judgments of learning (JOLs). Specifically, in two experiments we examined recognition memory for visual images across three study-test cycles, each of which contained novel images. We found that across cycles, participants’ JOLs did in fact increase, reflecting metacognitive sensitivity to near-perfect levels of recognition memory performance. This finding suggests that individuals can and do monitor their test performance in the absence of explicit feedback, and further underscores the important role that test experience can play in shaping metacognitive evaluations of learning and remembering.


2021 ◽  
pp. 174077452110344
Author(s):  
Michelle M Nuño ◽  
Joshua D Grill ◽  
Daniel L Gillen ◽  

Background/Aims: The focus of Alzheimer’s disease studies has shifted to earlier disease stages, including mild cognitive impairment. Biomarker inclusion criteria are often incorporated into mild cognitive impairment clinical trials to identify individuals with “prodromal Alzheimer’s disease” to ensure appropriate drug targets and enrich for participants likely to develop Alzheimer’s disease dementia. The use of these eligibility criteria may affect study power. Methods: We investigated outcome variability and study power in the setting of proof-of-concept prodromal Alzheimer’s disease trials that incorporate cerebrospinal fluid levels of total tau (t-tau) and phosphorylated (p-tau) as primary outcomes and how differing biomarker inclusion criteria affect power. We used data from the Alzheimer’s Disease Neuroimaging Initiative to model trial scenarios and to estimate the variance and within-subject correlation of total and phosphorylated tau. These estimates were then used to investigate the differences in study power for trials considering these two surrogate outcomes. Results: Patient characteristics were similar for all eligibility criteria. The lowest outcome variance and highest within-subject correlation were obtained when phosphorylated tau was used as an eligibility criterion, compared to amyloid beta or total tau, regardless of whether total tau or phosphorylated tau were used as primary outcomes. Power increased when eligibility criteria were broadened to allow for enrollment of subjects with either low amyloid beta or high phosphorylated tau. Conclusion: Specific biomarker inclusion criteria may impact statistical power in trials using total tau or phosphorylated tau as the primary outcome. In concert with other important considerations such as treatment target and population of clinical interest, these results may have implications to the integrity and efficiency of prodromal Alzheimer’s disease trial designs.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Jiangyi Xia ◽  
Ali Mazaheri ◽  
Katrien Segaert ◽  
David P Salmon ◽  
Danielle Harvey ◽  
...  

Abstract Reliable biomarkers of memory decline are critical for the early detection of Alzheimer’s disease. Previous work has found three EEG measures, namely the event-related brain potential P600, suppression of oscillatory activity in the alpha frequency range (∼10 Hz) and cross-frequency coupling between low theta/high delta and alpha/beta activity, each of which correlates strongly with verbal learning and memory abilities in healthy elderly and patients with mild cognitive impairment or prodromal Alzheimer’s disease. In the present study, we address the question of whether event-related or oscillatory measures, or a combination thereof, best predict the decline of verbal memory in mild cognitive impairment and Alzheimer’s disease. Single-trial correlation analyses show that despite a similarity in their time courses and sensitivities to word repetition, the P600 and the alpha suppression components are minimally correlated with each other on a trial-by-trial basis (generally |rs| < 0.10). This suggests that they are unlikely to stem from the same neural mechanism. Furthermore, event-related brain potentials constructed from bandpass filtered (delta, theta, alpha, beta or gamma bands) single-trial data indicate that only delta band activity (1–4 Hz) is strongly correlated (r = 0.94, P < 0.001) with the canonical P600 repetition effect; event-related potentials in higher frequency bands are not. Importantly, stepwise multiple regression analyses reveal that the three event-related brain potential/oscillatory measures are complementary in predicting California Verbal Learning Test scores (overall R2’s in 0.45–0.63 range). The present study highlights the importance of combining EEG event-related potential and oscillatory measures to better characterize the multiple mechanisms of memory failure in individuals with mild cognitive impairment or prodromal Alzheimer’s disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christina F. de Veij Mestdagh ◽  
Jaap A. Timmerman ◽  
Frank Koopmans ◽  
Iryna Paliukhovich ◽  
Suzanne S. M. Miedema ◽  
...  

AbstractHibernation induces neurodegeneration-like changes in the brain, which are completely reversed upon arousal. Hibernation-induced plasticity may therefore be of great relevance for the treatment of neurodegenerative diseases, but remains largely unexplored. Here we show that a single torpor and arousal sequence in mice does not induce dendrite retraction and synapse loss as observed in seasonal hibernators. Instead, it increases hippocampal long-term potentiation and contextual fear memory. This is accompanied by increased levels of key postsynaptic proteins and mitochondrial complex I and IV proteins, indicating mitochondrial reactivation and enhanced synaptic plasticity upon arousal. Interestingly, a single torpor and arousal sequence was also sufficient to restore contextual fear memory in an APP/PS1 mouse model of Alzheimer’s disease. Our study demonstrates that torpor in mice evokes an exceptional state of hippocampal plasticity and that naturally occurring plasticity mechanisms during torpor provide an opportunity to identify unique druggable targets for the treatment of cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document