scholarly journals A Comparison of Traditional and Serious Game-Based Digital Markers of Cognition in Older Adults with Mild Cognitive Impairment and Healthy Controls

2021 ◽  
Vol 79 (4) ◽  
pp. 1747-1759
Author(s):  
Paraskevi Iliadou ◽  
Ioannis Paliokas ◽  
Stelios Zygouris ◽  
Eftychia Lazarou ◽  
Konstantinos Votis ◽  
...  

Background: Electroencephalography (EEG) has been used to assess brain activity while users are playing an immersive serious game. Objective: To assess differences in brain activation as measured with a non-intrusive wearable EEG device, differences in game performance and correlations between EEG power, game performance and global cognition, between cognitively impaired and non-impaired older adults, during the administration of a novel self-administered serious game-based test, the Virtual Supermarket Test (VST). Methods: 43 older adults with subjective cognitive decline (SCD) and 33 older adults with mild cognitive impairment (MCI) were recruited from day centers for cognitive disorders. Global cognition was assessed with the Montreal Cognitive Assessment (MoCA). Brain activity was measured with a non-intrusive wearable EEG device in a resting state condition and while they were administered the VST. Results: During resting state condition, the MCI group showed increased alpha, beta, delta, and theta band power compared to the SCD group. During the administration of the VST, the MCI group showed increased beta and theta band power compared to the SCD group. Regarding game performance, alpha, beta, delta, and theta rhythms were positively correlated with average duration, while delta rhythm was positively correlated with mean errors. MoCA correlated with alpha, beta, delta, and theta rhythms and with average game duration and mean game errors indicating that elevated EEG rhythms in MCI may be associated with an overall cognitive decline. Conclusion: VST performance can be used as a digital biomarker. Cheap commercially available wearable EEG devices can be used for obtaining brain activity biomarkers.

Author(s):  
Ehsan T. Esfahani ◽  
Shrey Pareek ◽  
Pramod Chembrammel ◽  
Mostafa Ghobadi ◽  
Thenkurussi Kesavadas

Recognition of user’s mental engagement is imperative to the success of robotic rehabilitation. The paper explores the novel paradigm in robotic rehabilitation of using Passive BCI as opposed to the conventional Active ones. We have designed experiments to determine a user’s level of mental engagement. In our experimental study, we record the brain activity of 3 healthy subjects during multiple sessions where subjects need to navigate through a maze using a haptic system with variable resistance/assistance. Using the data obtained through the experiments we highlight the drawbacks of using conventional workload metrics as indicators of human engagement, thus asserting that Motor and Cognitive Workloads be differentiated. Additionally we propose a new set of features: differential PSD of Cz-Poz at alpha, Beta and Sigma band, (Mental engagement) and relative C3-C4 at beta (Motor Workload) to distinguish Normal Cases from those instances when haptic where applied with an accuracy of 92.93%. Mental engagement is calculated using the power spectral density of the Theta band (4–7 Hz) in the parietal-midline (Pz) with respect to the central midline (Cz). The above information can be used to adjust robotic rehabilitation parameters I accordance with the user’s needs. The adjustment may be in the force levels, difficulty level of the task or increasing the speed of the task.


2021 ◽  
Author(s):  
Milou J.L. van Helvert ◽  
Leonie Oostwoud Wijdenes ◽  
Linda Geerligs ◽  
W. Pieter Medendorp

AbstractWhile beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants’ choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion-artifact-free time window, the location of the upcoming target was cued 1000-1500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cueing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cueing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty, similar to target uncertainty, selectively modulates beta-band power during motor planning.New & NoteworthyWhile reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cueing paradigm, that the power in this frequency band, but not in the alpha or theta-band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.


2021 ◽  
Author(s):  
Ainara Jauregi ◽  
Hongfang Wang ◽  
Stefanie Hassel ◽  
Klaus Kessler

Inhibition, the ability to withhold a response or to stop an initiated response, is a necessary cognitive function that can be vulnerable to an impairment. High levels of impulsivity have been shown to impact response inhibition and/or cognitive task performance. The present study investigated the spectral and spatio-temporal dynamics of response inhibition, during a combined go/no-go/stop-signal task, using magnetoencephalography (MEG) in a healthy undergraduate student population. Participants were divided by their level of impulsivity, as assessed by self-report measures, to explore potential differences between high (n=17) and low (n=17) impulsivity groups. Results showed that individuals scoring high on impulsivity failed significantly more NOGO and STOP trials than those scoring low, but no significant differences were found between stop-signal reaction times. During NOGO and STOP conditions, high impulsivity individuals showed significantly smaller M1 components in posterior regions, which could suggest an attentional processing deficit. During NOGO trials, the M2 component was found to be reduced in individuals scoring high, possibly reflecting less pre-motor inhibition efficiency, whereas in STOP trials, the network involved in the stopping process was engaged later in high impulsivity individuals. The high impulsivity group also engaged frontal networks more during the STOP-M3 component only, possibly as a late compensatory process. The lack of response time differences on STOP trials could indicate that compensation was effective to some degree (at the expense of higher error rates). Decreased frontal delta and theta band power was observed in high impulsivity individuals, suggesting a possible deficit in frontal pathways involved in motor suppression, however, unexpectedly, increased delta and theta band power in central and posterior sensors was also observed, which could be indicative of an increased effort to compensate for frontal deficits. Individuals scoring highly also showed decreased alpha power in frontal sensors, suggesting decreased inhibitory processing, along with reduced alpha suppression in posterior regions, reflecting reduced cue processing. These results provide evidence for how personality traits, such as impulsivity, relate to differences in the neural correlates of response inhibition.


2011 ◽  
Vol 504 (3) ◽  
pp. 204-208 ◽  
Author(s):  
Bruna Velasques ◽  
Sergio Machado ◽  
Flávia Paes ◽  
Juliana Bittencourt ◽  
Clayton Amaral Domingues ◽  
...  

2014 ◽  
Vol 102 ◽  
pp. 118-129 ◽  
Author(s):  
Ivo Käthner ◽  
Selina C. Wriessnegger ◽  
Gernot R. Müller-Putz ◽  
Andrea Kübler ◽  
Sebastian Halder

2021 ◽  
Vol 91 ◽  
pp. 183-192
Author(s):  
Austin M. Tang ◽  
Kuang-Hsuan Chen ◽  
Angad S. Gogia ◽  
Roberto Martin Del Campo-Vera ◽  
Rinu Sebastian ◽  
...  

2019 ◽  
Vol 146 ◽  
pp. 101-106 ◽  
Author(s):  
Taylor Hornung ◽  
Wen-Hsuan Chan ◽  
Ralph-Axel Müller ◽  
Jeanne Townsend ◽  
Brandon Keehn

2020 ◽  
Vol 238 (5) ◽  
pp. 1323-1333 ◽  
Author(s):  
Arnd Gebel ◽  
Tim Lehmann ◽  
Urs Granacher

Abstract Electroencephalographic (EEG) research indicates changes in adults’ low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16–17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4–7 Hz) and alpha-2 (10–12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands.


Neuroreport ◽  
1996 ◽  
Vol 7 (7) ◽  
pp. 1235-1240 ◽  
Author(s):  
W. Klimesch ◽  
M. Doppelmayr ◽  
H. Russegger ◽  
T. Pachinger

Hippocampus ◽  
2017 ◽  
Vol 27 (10) ◽  
pp. 1040-1053 ◽  
Author(s):  
Jui-Jui Lin ◽  
Michael D. Rugg ◽  
Sandhitsu Das ◽  
Joel Stein ◽  
Daniel S. Rizzuto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document