theta band power
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 10 (12) ◽  
pp. e29101220070
Author(s):  
Flávia Freitas ◽  
Kelma Galeno ◽  
Juliana Bittencourt ◽  
Francisco Magalhães ◽  
Valécia Natália Carvalho da Silva ◽  
...  

Cybersickness results from the visual vestibule conflict, that is, the incoherence between the sensations related to real movement, in the virtual environment, and the visual stimuli. In response to the virtual environment, one can observe discomforts such as nausea, difficulty in concentrating, and headaches, among others. There are no studies in the literature that analyze the inhibition control of light stimuli in individuals sensitive to Cybersickness. Therefore, this study looked at the control of light stimulus inhibition in Cybersickness. The Sickness Susceptibility Questionnaire was used to divide the subjects into experimental and control groups, and quantify the signs and symptoms, comparing them before and after 3D virtual immersion and. Participants in both groups were examined with EEGq for absolute theta band power in the dorsolateral prefrontal cortex and ventrolateral prefrontal cortex during the light stimulus inhibition task before and after participants watched the 3D video. The partial results showed that there was an increase in the absolute theta band power in both groups comparing the moments before and after, as well as a significant difference in the experimental group compared to the control, for the same moment. Thus, it was observed that individuals who were exposed to 3D virtual reality and developed Cybersikness, showed greater absolute theta band power in the areas studied.


2021 ◽  
Vol 91 ◽  
pp. 183-192
Author(s):  
Austin M. Tang ◽  
Kuang-Hsuan Chen ◽  
Angad S. Gogia ◽  
Roberto Martin Del Campo-Vera ◽  
Rinu Sebastian ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philipp Taesler ◽  
Michael Rose

AbstractThe experience of pain is generated by activations throughout a complex pain network with the insular cortex as a central processing area. The state of ongoing oscillatory activity can influence subsequent processing throughout this network. In particular the ongoing theta-band power can be relevant for later pain processing, however a direct functional relation to post-stimulus processing or behaviour is missing. Here, we used a non-invasive brain–computer interface to either increase or decrease ongoing theta-band power originating in the insular cortex. Our results show a differential modulation of oscillatory power and even more important a transfer to independently measured pain processing and sensation. Pain evoked neural power and subjective pain discrimination were differentially affected by the induced modulations of the oscillatory state. The results demonstrate a functional relevance of insular based theta-band oscillatory states for the processing and subjective discrimination of nociceptive stimuli and offer the perspective for clinical applications.


2021 ◽  
Author(s):  
Ainara Jauregi ◽  
Hongfang Wang ◽  
Stefanie Hassel ◽  
Klaus Kessler

Inhibition, the ability to withhold a response or to stop an initiated response, is a necessary cognitive function that can be vulnerable to an impairment. High levels of impulsivity have been shown to impact response inhibition and/or cognitive task performance. The present study investigated the spectral and spatio-temporal dynamics of response inhibition, during a combined go/no-go/stop-signal task, using magnetoencephalography (MEG) in a healthy undergraduate student population. Participants were divided by their level of impulsivity, as assessed by self-report measures, to explore potential differences between high (n=17) and low (n=17) impulsivity groups. Results showed that individuals scoring high on impulsivity failed significantly more NOGO and STOP trials than those scoring low, but no significant differences were found between stop-signal reaction times. During NOGO and STOP conditions, high impulsivity individuals showed significantly smaller M1 components in posterior regions, which could suggest an attentional processing deficit. During NOGO trials, the M2 component was found to be reduced in individuals scoring high, possibly reflecting less pre-motor inhibition efficiency, whereas in STOP trials, the network involved in the stopping process was engaged later in high impulsivity individuals. The high impulsivity group also engaged frontal networks more during the STOP-M3 component only, possibly as a late compensatory process. The lack of response time differences on STOP trials could indicate that compensation was effective to some degree (at the expense of higher error rates). Decreased frontal delta and theta band power was observed in high impulsivity individuals, suggesting a possible deficit in frontal pathways involved in motor suppression, however, unexpectedly, increased delta and theta band power in central and posterior sensors was also observed, which could be indicative of an increased effort to compensate for frontal deficits. Individuals scoring highly also showed decreased alpha power in frontal sensors, suggesting decreased inhibitory processing, along with reduced alpha suppression in posterior regions, reflecting reduced cue processing. These results provide evidence for how personality traits, such as impulsivity, relate to differences in the neural correlates of response inhibition.


2021 ◽  
Vol 79 (4) ◽  
pp. 1747-1759
Author(s):  
Paraskevi Iliadou ◽  
Ioannis Paliokas ◽  
Stelios Zygouris ◽  
Eftychia Lazarou ◽  
Konstantinos Votis ◽  
...  

Background: Electroencephalography (EEG) has been used to assess brain activity while users are playing an immersive serious game. Objective: To assess differences in brain activation as measured with a non-intrusive wearable EEG device, differences in game performance and correlations between EEG power, game performance and global cognition, between cognitively impaired and non-impaired older adults, during the administration of a novel self-administered serious game-based test, the Virtual Supermarket Test (VST). Methods: 43 older adults with subjective cognitive decline (SCD) and 33 older adults with mild cognitive impairment (MCI) were recruited from day centers for cognitive disorders. Global cognition was assessed with the Montreal Cognitive Assessment (MoCA). Brain activity was measured with a non-intrusive wearable EEG device in a resting state condition and while they were administered the VST. Results: During resting state condition, the MCI group showed increased alpha, beta, delta, and theta band power compared to the SCD group. During the administration of the VST, the MCI group showed increased beta and theta band power compared to the SCD group. Regarding game performance, alpha, beta, delta, and theta rhythms were positively correlated with average duration, while delta rhythm was positively correlated with mean errors. MoCA correlated with alpha, beta, delta, and theta rhythms and with average game duration and mean game errors indicating that elevated EEG rhythms in MCI may be associated with an overall cognitive decline. Conclusion: VST performance can be used as a digital biomarker. Cheap commercially available wearable EEG devices can be used for obtaining brain activity biomarkers.


2020 ◽  
Vol 238 (5) ◽  
pp. 1323-1333 ◽  
Author(s):  
Arnd Gebel ◽  
Tim Lehmann ◽  
Urs Granacher

Abstract Electroencephalographic (EEG) research indicates changes in adults’ low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16–17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4–7 Hz) and alpha-2 (10–12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands.


2019 ◽  
Vol 146 ◽  
pp. 101-106 ◽  
Author(s):  
Taylor Hornung ◽  
Wen-Hsuan Chan ◽  
Ralph-Axel Müller ◽  
Jeanne Townsend ◽  
Brandon Keehn

NeuroImage ◽  
2018 ◽  
Vol 179 ◽  
pp. 63-78 ◽  
Author(s):  
Raphaël Hamel ◽  
Félix-Antoine Savoie ◽  
Angélina Lacroix ◽  
Kevin Whittingstall ◽  
Maxime Trempe ◽  
...  

Hippocampus ◽  
2017 ◽  
Vol 27 (10) ◽  
pp. 1040-1053 ◽  
Author(s):  
Jui-Jui Lin ◽  
Michael D. Rugg ◽  
Sandhitsu Das ◽  
Joel Stein ◽  
Daniel S. Rizzuto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document