Study and design of dual stator permanent magnet machine with spoke-type configurations using phase-group concentrated-coil windings

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3639
Author(s):  
Rundong Huang ◽  
Chunhua Liu ◽  
Zaixin Song ◽  
Hang Zhao

Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates both axial-flux and radial-flux machine topologies in a compact space, which effectively improves the copper utilization of the machine. First, the radial rotor can balance the large axial forces on axial rotors and prevent them from deforming due to the forces. On the other hand, the machine adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with different parameters are compared to obtain an optimal structure. These indicated that the proposed ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force (EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the proposed ARFPM machine had the highest torque density and relatively small torque ripple.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2758 ◽  
Author(s):  
Jung-Woo Kwon ◽  
Jin-hee Lee ◽  
Wenliang Zhao ◽  
Byung-Il Kwon

We herein propose a novel high-torque-density flux-switching permanent magnet machine (FSPMM) which adopted phase-group concentrated-coil (PGCC) winding and a cogging torque reduction technique. The PGCC winding was applied to increase the torque density. In order to maximize the torque of the FSPMM that utilizes the PGCC windings, the performance according to stator slots/rotor poles combinations were compared. A machine which had 12 stator slots and 13 rotor poles (12S13P) was selected for its top average torque value. However, the 12S13P PGCC FSPMM contains high cogging torque that must be reduced. The cogging torque reduction technique is applied, and the parameters used in the technique are further optimized to achieve the target average torque, while suppressing the cogging torque as much as possible. The optimization process was performed with a collaboration of the genetic algorithm and Kriging method. The analysis results of the optimized design exhibited huge reductions in the cogging torque and eventually in the torque ripple from the initial machine, with reasonable average torque reduction. The entire work was evaluated experimentally using a manufactured prototype.


Author(s):  
Stephane Mouty ◽  
Abdollah Mirzaian ◽  
Frederic Gustin ◽  
Alain Berthon ◽  
Daniel Depernet ◽  
...  

2013 ◽  
Vol 62 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Ján Kaňuch ◽  
Želmíra Ferková

Abstract In this paper the design and the magneto-static simulation of axial-flux permanent- magnet stepper motor with the disc type rotor is presented. Disk motors are particularly suitable for electrical vehicles, robots, valve control, pumps, centrifuges, fans, machine tools and manufacturing. The brushless machine with axial flux and permanent magnets, also called the disc-type machine, is an interesting alternative to its cylindrical radial flux counterpart due to the disk shape, compact construction and high torque density. This paper describes a design of four phase microstepping motor with the disc type rotor. The FEM modeling and the 3D magneto-static simulation of the disk stepper motor with permanent magnets is being subject of the article, too. Disc rotor type permanent magnet stepper motor for high torque to inertia ratio is ideal for robotics and CNC machines.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 48587-48598
Author(s):  
Po-Huan Chou ◽  
Shih-Chin Yang ◽  
Ciao-Jhen Jhong ◽  
Jen-I Huang ◽  
Jyun-You Chen

Sign in / Sign up

Export Citation Format

Share Document