fractional slot concentrated winding
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 47)

H-INDEX

20
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7690
Author(s):  
Tomasz Drabek ◽  
Piotr Kapustka ◽  
Tomasz Lerch ◽  
Jerzy Skwarczyński

The article presents a concept for a new design of the well-known Transverse Flux Machine (TFM) made with the use of a flat core used in classical electrical machines. The proposed design was first analytically verified and was subsequently verified using the finite element method, which fully corroborated the results. The simulations show that a set of three single-phase TFM machines with slotted flat rotor yokes generates a torque over three times greater than that of an induction motor and twice as large as Fractional Slot Concentrated Winding—Permanent Magnet Synchronous Machines (FSCW-PMSM). The performed comparative calculations confirmed that the torque generated by machines operating on principles similar to TFM can generate a torque much greater than those currently in common use.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 234
Author(s):  
Jan Laksar ◽  
Lukáš Veg ◽  
Roman Pechánek

Interest in multilayer windings is increasing with the application of the hairpin winding technology to the manufacturing of electrical machines. Therefore, the four-layer fractional slot concentrated winding is used for the initial design of the machine in this paper. The proposed physical model of the machine uses winding with a relatively high number of turns which is inappropriate to hairpin winding. Therefore the round-wire winding is created and the three-layer winding is derived and analyzed including the effect on the slot leakage inductance. The thermal analysis is then applied to the physical model of the machine to evaluate the slot-related thermal properties of the slot and the whole machine. The measurement is compared with the finite element analysis (FEA) and the equivalent slot thermal conductivity and heat transfer coefficients of the stator and rotor are obtained.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1848
Author(s):  
Ahmed Hemeida ◽  
Mohamed Y. Metwly ◽  
Ayman S. Abdel-Khalik ◽  
Shehab Ahmed

The transition to electric vehicles (EVs) has received global support as initiatives and legislation are introduced in support of a zero-emissions future envisaged for transportation. Integrated on-board battery chargers (OBCs), which exploit the EV drivetrain elements into the charging process, are considered an elegant solution to achieve this widespread adoption of EVs. Surface-mounted permanent-magnet (SPM) machines have emerged as plausible candidates for EV traction due to their nonsalient characteristics and ease of manufacturing. From an electric machine design perspective, parasitic torque ripple and core losses need to be minimized in integrated OBCs during both propulsion and charging modes. The optimal design of EV propulsion motors has been extensively presented in the literature; however, the performance of the optimal traction machine under the charging mode of operation for integrated OBCs has not received much attention in the literature thus far. This paper investigates the optimal design of a six-phase SPM machine employed in an integrated OBC with two possible winding layouts, namely, dual three-phase or asymmetrical six-phase winding arrangements. First, the sizing equation and optimized geometrical parameters of a six-phase 12-slot/10-pole fractional slot concentrated winding (FSCW)-based SPM machine are introduced. Then, variations in the output average torque, parasitic torque ripple, and parasitic core losses with the slot opening width and the PM width-to-pole pitch ratio are further investigated for the two proposed winding layouts under various operation modes. Eventually, the optimally designed machine is simulated using analytical magnetic equivalent circuit (MEC) models. The obtained results are validated using 2D finite element (FE) analysis.


2021 ◽  
pp. 1-1
Author(s):  
Benteng Zhao ◽  
Jinlin Gong ◽  
Tao Tong ◽  
Y. Xu ◽  
E. Semail ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document