Homotopy perturbation approach for Ohmic dissipation and mixed convection effects on non-Newtonian nanofluid flow between two co-axial tubes with peristalsis

Author(s):  
Nabil T. Eldabe ◽  
Mohamed Y. Abou-zeid ◽  
Adel Abosaliem ◽  
Ahmed Alana ◽  
Nada Hegazy

In this study, the effects of radially varying magnetic field, internal heat generation and mixed convection with thermal radiation on peristaltic motion of a non-Newtonian fluid are investigated. The fluid used is third-grade model. The flow is through the gap between two co-axial vertical tubes under the effect of radially varying magnetic field. The outer tube is flexible with sinusoidal deformations. The problem is modulated mathematically by a system of partial differential equations which describes the equations of momentum, heat transfer and nanoparticles concentration which are simplified by using long wave length and low-Reynolds number assumptions. The closed solutions of fluid temperature and nanoparticle concentration are obtained, and the solution of velocity is obtained by using the homotopy perturbation method (HPM). The radially varying magnetic field effect on the axial velocity is discussed and it is shown that the increase of magnetic field parameter tends to reduce the fluid flow.

2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2449-2458 ◽  
Author(s):  
Nabil Eldabe ◽  
Mohamed Abou-Zeid

The present analysis discusses the effects of thermal-diffusion with thermal radiation, Joule heating and internal heat generation on peristaltic flow of a non-Newtonian fluid obeying Jeffery model. Heat and mass transfer are also taken into consideration, the flow is between two co-axial tubes under the effect of radially varying magnetic field. The inner tube is uniform and at rest, while the outer tube is flexible with sinusoidal wave traveling. The problem is modulated mathematically by a system of partial differential equations which describes the equations of momentum, heat, and mass transfer. These equations are solved analytically under the assumptions of long wave length and low-Reynolds number in non-dimensional form. The solutions are obtained as a functions of physical parameters of the problem. The radially varying magnetic field effect on the temperature and concentration distributions is analyzed and it is shown that the increase of Hartman number tends to reduce the temperature, while it increases the concentration.


Author(s):  
Nabil T. Eldabe ◽  
Mohamed Y. Abou zeid ◽  
Sami M. El Shabouri ◽  
Tarek N. Salama ◽  
Aya M. Ismael

Inclined uniform magnetic field and mixed convention effects on micropolar non-Newtonian nanofluid Al2O3 flow with heat transfer are studied. The heat source, both viscous and ohmic dissipation and temperature micropolarity properties are considered. We transformed our system of non-linear partial differential equations into ordinary equations by using suitable similarity transformations. These equations are solved by making use of Rung–Kutta–Merson method in a shooting and matching technique. The numerical solutions of the tangential velocity, microtation velocity, temperature and nanoparticle concentration are obtained as functions of the physical parameters of the problem. Moreover, we discussed the effects of these parameters on the numerical solutions and depicted graphically. It is obvious that these parameters control the fluid flow. It is noticed that the tangential velocity magnifies with an increase in the value of Darcy number. Meanwhile, the value of the tangential velocity reduces with the elevation in the value of the magnetic field parameter. On the other hand, the elevation in the value of Brownian motion parameter leads to a reduction in the value of fluid temperature. Furthermore, increasing in the value of heat source parameter makes an enhancement in the value of nanoparticles concentration. The current study has many accomplishments in several scientific areas like medical industry, medicine, and others. Therefore, it represents the depiction of gas or liquid motion over a surface. When particles are moving from areas of high concentration to areas of low concentration.


Sign in / Sign up

Export Citation Format

Share Document