Ohmic and viscous dissipation effects on micropolar non-Newtonian nanofluid Al2O3 flow through a non-Darcy porous media

Author(s):  
Nabil T. Eldabe ◽  
Mohamed Y. Abou zeid ◽  
Sami M. El Shabouri ◽  
Tarek N. Salama ◽  
Aya M. Ismael

Inclined uniform magnetic field and mixed convention effects on micropolar non-Newtonian nanofluid Al2O3 flow with heat transfer are studied. The heat source, both viscous and ohmic dissipation and temperature micropolarity properties are considered. We transformed our system of non-linear partial differential equations into ordinary equations by using suitable similarity transformations. These equations are solved by making use of Rung–Kutta–Merson method in a shooting and matching technique. The numerical solutions of the tangential velocity, microtation velocity, temperature and nanoparticle concentration are obtained as functions of the physical parameters of the problem. Moreover, we discussed the effects of these parameters on the numerical solutions and depicted graphically. It is obvious that these parameters control the fluid flow. It is noticed that the tangential velocity magnifies with an increase in the value of Darcy number. Meanwhile, the value of the tangential velocity reduces with the elevation in the value of the magnetic field parameter. On the other hand, the elevation in the value of Brownian motion parameter leads to a reduction in the value of fluid temperature. Furthermore, increasing in the value of heat source parameter makes an enhancement in the value of nanoparticles concentration. The current study has many accomplishments in several scientific areas like medical industry, medicine, and others. Therefore, it represents the depiction of gas or liquid motion over a surface. When particles are moving from areas of high concentration to areas of low concentration.

2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1183-1194 ◽  
Author(s):  
Muhammad Awais ◽  
Saeed Awan ◽  
A Aqsa ◽  
Nimra Muqaddass ◽  
Saeed Rehman ◽  
...  

In this analysis, Sakiadis rheology of the generalized polymeric material has been presented with magnetic field and heat source/sink. Convective heating process with thermal radiations have been incorporated. Mathematical modeling has been performed for the conversion of physical problem into set of non-linear equations. Suitable transformations have been employed in order to convert the derived PDE into set of non-linear ODE. Analytical as well as finite difference method based numerical solutions for the velocity and temperature profiles are computed. Graphical and numerical illustrations have been presented in order to analyze the behavior of involved physical quantities. Error analysis for the non-linear system has been presented in order to show the validity of the obtained results. Bar charts have been plotted to present the heat flux analysis. Tabular values of local Nusselt number are computed for the involved key parameters. Heat transfer rates against magnetic and porosity effects found to be decreased since magnetic field and porosity retard the molecular movement of the fluid particles. This controlling property of magnetic field and porosity effects have application in MHD power generation, electromagnetic casting of metals, MHD ion propulsion, etc. Moreover internal heat generation and absorption effects have opposite effects on the fluid temperature.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 917-928 ◽  
Author(s):  
Zeeshan Khan ◽  
Haroon Ur Rasheed ◽  
Tawfeeq Abdullah Alkanhal ◽  
Murad Ullah ◽  
Ilyas Khan ◽  
...  

Abstract The effect of magnetic field on the flow of the UCMF (Upper-Convected-Maxwell Fluid) with the property of a heat source/sink immersed in a porous medium is explored. A shrinking phenomenon along with the permeability of the wall are considered. The governing equations for the motion and transfer of heat of the UC MF along with boundary conditions are converted into a set of coupled nonlinear mathematical equations. Appropriate similarity transformations are used to convert the set of nonlinear partial differential equations into nonlinear ordinary differential equations. The modeled ordinary differential equations have been solved by the Homotopy Analysis Method (HAM). The convergence of the series solution is established. For the sake of comparison, numerical (ND-Solve method) solutions are also obtained. Special attention is given to how the non-dimensional physical parameters of interest affect the flow of the UCMF. It is observed that with the increasing Deborah number the velocity decreases and the temperature inside the fluid increases. The results show that the velocity and temperature distribution increases with a porous medium. It is also observed that the magnetic parameter has a decelerating effect on velocity while the temperature profiles increases in the entire domain. Due to the increase in Prandtl number the temperature profile increases. It is also observed that the heat source enhance the thermal conductivity and increases the fluid temperature while the heat sink provides a decrease in the fluid temperature.


2020 ◽  
Vol 50 (4) ◽  
pp. 283-289
Author(s):  
S. Jena ◽  
S. R. Mishra ◽  
P.K. Pattnaik ◽  
Ram Prakash Sharma

This paper deals with nanofluid flow between parallel plates and heat transfer through porous media with heat source /sink. The governing equations are transformed into self-similar ordinary differential equations by adopting similarity transformations and then the converted equations are solved numerically by Runge-Kutta fourth order method. Special emphasis has been given to the parameters of physical interest which include Prandtl number, magnetic parameter, porous matrix, chemical reaction parameter and heat source parameter. The results obtained for velocity, temperature and concentration are shown in graphs. The comparison of the special case of this present results with the existing numerical solutions in the literature shows excellent agreement.


2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 423-431
Author(s):  
Wajid Jan ◽  
Muhammad Farooq ◽  
Jamel Baili ◽  
Rehan Ali Shah ◽  
Aamir Khan ◽  
...  

The impacts of magnetic field dependent viscous fluid is explored between squeezing plates in the presence of homogeneous and heterogeneous reactions. The unsteady constitutive equations of heat and mass transfers, modified Navier-Stokes, magnetic field and homogeneous and heterogeneous reactions are coupled as an system of ODE. The appropriate solutions are established for the vertical and axial induced magnetic field equations for the transformed and momentum as well as for the MHD pressure and torque exerted on the upper plate, and are in details. In the case of a smooth plate, the self-similar equation with acceptable starting assumptions and auxiliary parameters is solved by utilising a homotopy analytics method, to generate an algorithm with fast and guaranteed convergence. By comparing homotopy analytics method solutions with BVP4c numerical solver packaging, the validity and correctness of the homotopy analytics method findings are demonstrated. Magnetic Reynolds number have been shown to cause to decrease the distribution of magnetic field, fluid temperature, axial and tangential velocity. The magnetic field also has vertical and axial components with increasing viscosity. The applications of the investigation include car magneto-rheological shock absorbers, modern aircraft landing gear systems, procedures for heating or cooling, biological sensor systems, and bio-prothesis, etc.


2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 279-285
Author(s):  
Prvaeen Dadheech ◽  
Priyanka Agrawal ◽  
Anil Sharma ◽  
Kottakkaran Nisar ◽  
Sunil Purohit

In the present study Al2O3-SiO2-TiO2/C2H6O2 modified nanofluid flow over a stretching surface is considered with imposed inclined magnetic field. Three different suspended nanoparticles in a base fluid are considered in this next generation of hybrid nanofluid called as modified nanofluid. Ethanol glycol is taken as a base fluid with suspension of three nanoparticles of Al2O3, SiO2, and TiO2. The mathematical model of the flow is encountered by Runga-Kutta fourth order method using appropriate similarity transformations. As a key result it is observed that the capacity of heat transportation of modified nanofluid is higher as compared with nanofluids and hybrid nanofluids. Numerical solutions with graphical representation are presented. With increased inclined angle, parameter of magnetic field, and volume friction parameter a decrement in velocity field has been noticed for modified nanofluid.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 143
Author(s):  
Mubashar Arshad ◽  
Azad Hussain ◽  
Ali Hassan ◽  
Qusain Haider ◽  
Anwar Hassan Ibrahim ◽  
...  

This comparative research investigates the influence of a flexible magnetic flux and a chemical change on the freely fluid motion of a (MHD) magneto hydrodynamic boundary layer incompressible nanofluid across an exponentially expanding sheet. Water and ethanol are used for this analysis. The temperature transmission improvement of fluids is described using the Buongiorno model, which includes Brownian movement and thermophoretic distribution. The nonlinear partial differential equalities governing the boundary layer were changed to a set of standard nonlinear differential equalities utilizing certain appropriate similarity transformations. The bvp4c algorithm is then used to tackle the transformed equations numerically. Fluid motion is slowed by the magnetic field, but it is sped up by thermal and mass buoyancy forces and thermophoretic distribution increases non-dimensional fluid temperature resulting in higher temperature and thicker boundary layers. Temperature and concentration, on the other hand, have the same trend in terms of the concentration exponent, Brownian motion constraint, and chemical reaction constraint. Furthermore, The occurrence of a magnetic field, which is aided by thermal and mass buoyancies, assists in the enhancement of heat transmission and wall shear stress, whereas a smaller concentration boundary layer is produced by a first-order chemical reaction and a lower Schmidt number.


Author(s):  
Mahmoud E. Ouaf ◽  
Mohamed Y. Abou-zeid

The purpose of this paper is to investogate the ectromagnetic and micropolar properties on biviscosity fluid flow with heat and mass transfer through a non-Darcy porous medium. Morever, The heat source, viscous dissipation, thermal diffusion and chemical reaction are taken into consideration. The system of non linear equations which govern the motion is transformed into ordinary differential equations by using a suitable similarity transformations. These equations are solved by making use of Rung–Kutta–Merson method in a shooting and matching technique. The numerical solutions of the velocity, microtation velocity, temperature and concentration are obtained as a functions of the physical parameters of the problem. Moreover the effects of these parameters on these solutions are discussed numerically and depicted graphically. It is found that the microtation velocity increases or deceases as the electric parameter, Hartman parameter and the microrotation parameter increase. Morever, the temperature increases as Forschheimer number, Eckert number increase.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qingkai Zhao ◽  
Hang Xu ◽  
Longbin Tao

The time-dependent mixed bioconvection flow of an electrically conducting fluid between two infinite parallel plates in the presence of a magnetic field and a first-order chemical reaction is investigated. The fully coupled nonlinear systems describing the total mass, momentum, thermal energy, mass diffusion, and microorganisms equations are reduced to a set of ordinary differential equations via a set of new similarity transformations. The detailed analysis illustrating the influences of various physical parameters such as the magnetic, squeezing, and chemical reaction parameters and the Schmidt and Prandtl numbers on the distributions of temperature and microorganisms as well as the skin friction and the Nusselt number is presented. The conclusion is drawn that the flow field, temperature, and chemical reaction profiles are significantly influenced by magnetic parameter, heat generation/absorption parameter, and chemical parameter. Some examples of potential applications of such bioconvection could be found in pharmaceutical industry, microfluidic devices, microbial enhanced oil recovery, modeling oil, and gas-bearing sedimentary basins.


Author(s):  
Sharad Sinha ◽  
R. S. Yadav

A viscous electrically conducting fluid is considered and its steady mixed convective flow along a vertical stretching cylinder is investigated. It is assumed that the cylinder is embedded in a porous medium and, external magnetic field, heat source/sink are also taken into account. Suitable similarity transformations are used to reduce the governing equations and associated boundary conditions into a system of nonlinear ordinary differential equations. This system along with the boundary conditions is solved by fourth order Runge-Kutta method with shooting technique. Variations in fluid velocity and temperature due to various physical parameters such as heat source/sink parameter, mixed convection parameter, magnetic parameter are presented through graphs. Effect of these parameters on dimensionless shear stress and rate of heat transfer are discussed numerically through tables.


2021 ◽  
Vol 10 (2) ◽  
pp. 200-213
Author(s):  
Manik Das ◽  
Susmay Nandi ◽  
Bidyasagar Kumbhakar ◽  
Gauri Shanker Seth

The purpose of the present analysis is to investigate the Soret and Dufour effects on steady and incompressible MHD nonlinear convective flow of tangent hyperbolic nanofluid over a permeable stretching surface with multiple slip conditions at the wall. Also, nonlinearly varying thermal radiation, heat generation and chemical reaction along with a vanishing nanoparticle mass flux condition at the surface are taken into account. Further, Rosseland’s approximation for an optically thick and grey medium is used to approximate heat flux due to radiation. Suitable similarity transformations are employed to transform governing PDEs into a system of ODEs. The resulting nonlinear equations are then solved numerically using the shooting technique based on the Runge-Kutta Cash-Karp method. The upshots of various physical parameters on velocity, temperature and concentration distributions are illustrated and displayed through figures. The variations in coefficients of local skin friction, Nusselt and Sherwood numbers are explained and presented in tabular form. The obtained results are validated with the previously reported results for a particular case of the present fluid flow problem, and an outstanding correlation is noticed from the comparison. Graphical results reveal that the nonlinear convection parameters for both temperature and concentration accelerate the primary flow. However, the Dufour number diminishes the fluid temperature near the wall, and the Soret number uplifts the concentration profile within the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document