Real-time on-site inspection system for power transmission based on heterogeneous computing

2021 ◽  
pp. 1-10
Author(s):  
Xiaohong Yan ◽  
Zhigang Zhao ◽  
Yongqiang Liu

As the need of power supply is tremendously increasing in modern society, the stableness and reliability of the power delivery system are the two essential factors that ensure the power supply safety. With the quick expansion of electricity infrastructures, the failures of power transmission system are becoming more frequent, leading to economic loss and high risk of maintenance work under hazardous conditions. The existing automatic power line inspection utilizes advanced convolutional neural network (CNN) to improve the inspection efficiency, emerging as one promising solution. But the needed computational complexity is high since CNN inference demands large amount of multiplication-and-accumulation operations. In this paper, we alleviate this problem by utilizing the heterogeneous computing techniques to design a real-time on-site inspection system. Firstly, the required computational complexity of CNN inference is reduced using FFT-based convolution algorithms, speeding up the inference. Then we utilize the region of interest (ROI) extrapolation to predict the object detection bounding boxes without CNN inference, thus saving computing power. Finally, a heterogeneous computing architecture is presented to accommodate the requirements of proposed algorithms. According to the experiment results, the proposed design significantly improves the frame rate of CNN-based inspection visual system applied to power line inspection. The processing frame rate is also drastically improved. Moreover, the precision loss is negligible which means our proposed schemes are applicable for real application scenarios.

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Zishu Gao ◽  
Guodong Yang ◽  
En Li ◽  
Tianyu Shen ◽  
Zhe Wang ◽  
...  

There are a large number of insulators on the transmission line, and insulator damage will have a major impact on power supply security. Image-based segmentation of the insulators in the power transmission lines is a premise and also a critical task for power line inspection. In this paper, a modified conditional generative adversarial network for insulator pixel-level segmentation is proposed. The generator is reconstructed by encoder-decoder layers with asymmetric convolution kernel which can simplify the network complexity and extract more kinds of feature information. The discriminator is composed of a fully convolutional network based on patchGAN and learns the loss to train the generator. It is verified in experiments that the proposed method has better performances on mIoU and computational efficiency than Pix2pix, SegNet, and other state-of-the-art networks.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3348
Author(s):  
Zahid Ali Siddiqui ◽  
Unsang Park

Defects in high voltage transmission line components such as cracked insulators, broken wires rope, and corroded power line joints, are very common due to continuous exposure of these components to harsh environmental conditions. Consequently, they pose a great threat to humans and the environment. This paper presents a real-time aerial power line inspection system that aims to detect power line components such as insulators (polymer and porcelain), splitters, damper-weights, power lines, and then analyze these transmission line components for potential defects. The proposed system employs a deep learning-based framework using Jetson TX2 embedded platform for the real-time detection and localization of these components from a live video captured by remote-controlled drone. The detected components are then analyzed using novel defect detection algorithms, presented in this paper. Results show that the proposed detection and localization system is robust against highly cluttered environment, while the proposed defect analyzer outperforms similar researches in terms of defect detection precision and recall. With the help of the proposed system automatic defect analyzing system, manual inspection time can be reduced.


2021 ◽  
Vol 13 (2) ◽  
pp. 230
Author(s):  
Yunpeng Ma ◽  
Qingwu Li ◽  
Lulu Chu ◽  
Yaqin Zhou ◽  
Chang Xu

Unmanned aerial vehicles (UAVs) have become important tools for power transmission line inspection. Cameras installed on the platforms can efficiently obtain aerial images containing information about power equipment. However, most of the existing inspection systems cannot perform automatic real-time detection of transmission line components. In this paper, an automatic transmission line inspection system incorporating UAV remote sensing with binocular visual perception technology is developed to accurately detect and locate power equipment in real time. The system consists of a UAV module, embedded industrial computer, binocular visual perception module, and control and observation module. Insulators, which are key components in power transmission lines as well as fault-prone components, are selected as the detection targets. Insulator detection and spatial localization in aerial images with cluttered backgrounds are interesting but challenging tasks for an automatic transmission line inspection system. A two-stage strategy is proposed to achieve precise identification of insulators. First, candidate insulator regions are obtained based on RGB-D saliency detection. Then, the skeleton structure of candidate insulator regions is extracted. We implement a structure search to realize the final accurate detection of insulators. On the basis of insulator detection results, we further propose a real-time object spatial localization method that combines binocular stereo vision and a global positioning system (GPS). The longitude, latitude, and height of insulators are obtained through coordinate conversion based on the UAV’s real-time flight data and equipment parameters. Experiment results in the actual inspection environment (220 kV power transmission line) show that the presented system meets the requirement of robustness and accuracy of insulator detection and spatial localization in practical engineering.


2020 ◽  
Vol 15 (2) ◽  
pp. 144-196 ◽  
Author(s):  
Mohammad R. Khosravi ◽  
Sadegh Samadi ◽  
Reza Mohseni

Background: Real-time video coding is a very interesting area of research with extensive applications into remote sensing and medical imaging. Many research works and multimedia standards for this purpose have been developed. Some processing ideas in the area are focused on second-step (additional) compression of videos coded by existing standards like MPEG 4.14. Materials and Methods: In this article, an evaluation of some techniques with different complexity orders for video compression problem is performed. All compared techniques are based on interpolation algorithms in spatial domain. In details, the acquired data is according to four different interpolators in terms of computational complexity including fixed weights quartered interpolation (FWQI) technique, Nearest Neighbor (NN), Bi-Linear (BL) and Cubic Cnvolution (CC) interpolators. They are used for the compression of some HD color videos in real-time applications, real frames of video synthetic aperture radar (video SAR or ViSAR) and a high resolution medical sample. Results: Comparative results are also described for three different metrics including two reference- based Quality Assessment (QA) measures and an edge preservation factor to achieve a general perception of various dimensions of the mentioned problem. Conclusion: Comparisons show that there is a decidable trade-off among video codecs in terms of more similarity to a reference, preserving high frequency edge information and having low computational complexity.


2020 ◽  
Vol 29 (4) ◽  
pp. 461-473
Author(s):  
Joanna Witkowska-Dobrev ◽  
Anna Brzezińska ◽  
Olga Szlachetka

The paper consists of the discussion of issues related to the durability of foundations of extra high voltage (EHV) power line poles and possibilities of their renovation. The research part is the diagnostics of selected foundations of the EHV line poles (400 kV) Wielopole–Noszowice. During the on-site inspection, it was found that there are chipping and small surface defects, and in some cases losses of the reinforcement cover without visible pits. Based on the degree of damage, the scope of non-structural repairs and anti-corrosive protection was determined, presenting the next stages of their implementation.


2013 ◽  
Vol 18 ◽  
pp. 1891-1898
Author(s):  
Chetan Kumar N G ◽  
Sudhanshu Vyas ◽  
Ron K. Cytron ◽  
Christopher D. Gill ◽  
Joseph Zambreno ◽  
...  

Author(s):  
Parastoo Soleimani ◽  
David W. Capson ◽  
Kin Fun Li

AbstractThe first step in a scale invariant image matching system is scale space generation. Nonlinear scale space generation algorithms such as AKAZE, reduce noise and distortion in different scales while retaining the borders and key-points of the image. An FPGA-based hardware architecture for AKAZE nonlinear scale space generation is proposed to speed up this algorithm for real-time applications. The three contributions of this work are (1) mapping the two passes of the AKAZE algorithm onto a hardware architecture that realizes parallel processing of multiple sections, (2) multi-scale line buffers which can be used for different scales, and (3) a time-sharing mechanism in the memory management unit to process multiple sections of the image in parallel. We propose a time-sharing mechanism for memory management to prevent artifacts as a result of separating the process of image partitioning. We also use approximations in the algorithm to make hardware implementation more efficient while maintaining the repeatability of the detection. A frame rate of 304 frames per second for a $$1280 \times 768$$ 1280 × 768 image resolution is achieved which is favorably faster in comparison with other work.


Sign in / Sign up

Export Citation Format

Share Document