scholarly journals Trend analysis of land surface temperatures using time series segmentation algorithm

2016 ◽  
Vol 31 (2) ◽  
pp. 1121-1131 ◽  
Author(s):  
Nini Wang ◽  
Jun Xia ◽  
Jianchuan Yin ◽  
Xiaodong Liu
Author(s):  
Jaime Aguilar-Lome ◽  
Raúl Espinoza-Villar ◽  
Jhan-Carlo Espinoza ◽  
Joel Rojas-Acuña ◽  
Bram Leo Willems ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 1783 ◽  
Author(s):  
Haiyong Ding ◽  
Luming Xu ◽  
Andrew J. Elmore ◽  
Yuli Shi

Impacts of urbanization and climate change on ecosystems are widely studied, but these drivers of change are often difficult to isolate from each other and interactions are complicated. Ecosystem responses to each of these drivers are perhaps most clearly seen in phenology changes due to global climate change (warming climate) and urbanization (heat island effect). The phenology of vegetation can influence many important ecological processes, including primary production, evapotranspiration, and plant fitness. Therefore, evaluating the interacting effects of urbanization and climate change on vegetation phenology has the potential to provide information about the long-term impact of global change. Using remotely sensed time series of vegetation on the Yangtze River Delta in China, this study evaluated the impacts of rapid urbanization and climate change on vegetation phenology along an urban to rural gradient over time. Phenology markers were extracted annually from an 18-year time series by fitting the asymmetric Gaussian function model. Thermal remote sensing acquired at daytime and nighttime was used to explore the relationship between land surface temperature and vegetation phenology. On average, the spring phenology marker was 9.6 days earlier and the autumn marker was 6.63 days later in urban areas compared with rural areas. The spring phenology of urban areas advanced and the autumn phenology delayed over time. Across space and time, warmer spring daytime and nighttime land surface temperatures were related to earlier spring, while autumn daytime and nighttime land surface temperatures were related to later autumn phenology. These results suggest that urbanization, through surface warming, compounds the effect of climate change on vegetation phenology.


2020 ◽  
Vol 18 ◽  
pp. 100314 ◽  
Author(s):  
Abdulla - Al Kafy ◽  
Md. Shahinoor Rahman ◽  
Abdullah-Al- Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Muhaiminul Islam

Sign in / Sign up

Export Citation Format

Share Document