Wireless sensor network model with uncertain delay and packet loss based on intelligent fuzzy system

2020 ◽  
pp. 1-10
Author(s):  
Yuanbo Shi ◽  
Jianhui Wang ◽  
Xiaoke Fang ◽  
Shusheng Gu ◽  
Xiao Wang

Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771772269 ◽  
Author(s):  
Alejandro Cama-Pinto ◽  
Gabriel Piñeres-Espitia ◽  
José Caicedo-Ortiz ◽  
Elkin Ramírez-Cerpa ◽  
Leonardo Betancur-Agudelo ◽  
...  

Today, through the monitoring of agronomic variables, the wireless sensor networks are playing an increasingly important role in precision agriculture. Among the emerging technologies used to develop prototypes related to wireless sensor network, we find the Arduino platform and XBee radio modules from the DIGI Company. In this article, based on field tests, we conducted a comparative analysis of received strength signal intensity levels, calculation of path loss with “log-normal shadowing” and free-space path loss models. In addition, we measure packet loss for different transmission, distances and environments with respect to an “Arduino Mega” board, and radio modules XBee PRO S1 and XBee Pro S2. The tests for the packet loss and received strength signal intensity level show the best performance for the XBee Pro S2 in the indoor, outdoor, and rural scenarios.


Sign in / Sign up

Export Citation Format

Share Document