Operator- and user-based rebalancing strategy for bike-sharing systems

2021 ◽  
pp. 1-12
Author(s):  
Peng-Sheng You ◽  
Yi-Chih Hsieh

Leveraging their networks, bike rental companies usually provide customers with services for renting and returning bikes at different bike stations. Over time, however, rental networks may encounter problems with unbalanced bike stocks. The potential imbalance between supply and demand at bike stations may result in lost sales for stations with relatively high demand and underutilization for stations with relatively low demand. This paper proposed a constrained mixed-integer programming model that uses operator-based redistribution and user-based price approach to rebalance bikes across bike stations. This paper aims to maximize total profit over a planning horizon by determining operator-based bike transfers and dynamic pricing. The proposed model is a non-deterministic polynomial-time problem, and thus, a heuristic was developed based on linear programming and evolutionary computation to perform model solving. Numerical experiments reveal that the proposed method performed better than Lingo, a well-known commercial software. Sensitivity analyses were also performed to investigate the impact of changes in system parameters on computational results.

Author(s):  
Mohammad Mahdi Paydar ◽  
Marjan Olfati ◽  
chefi Triki

These days, clothing companies are becoming more and more developed around the world. Due to the rapid development of these companies, designing an efficient clothing supply chain network can be highly beneficial, especially with the remarkable increase in demand and uncertainties in both supply and demand. In this study, a bi-objective stochastic mixed-integer linear programming model is proposed for designing the supply chain of the clothing industry. The first objective function maximizes total profit and the second one minimizes downside risk. In the presented network, the initial demand and price are uncertain and are incorporated into the model through a set of scenarios. To solve the bi-objective model, weighted normalized goal programming is applied. Besides, a real case study for the clothing industry in Iran is proposed to validate the presented model and developed method. The obtained results showed the validity and efficiency of the current study. Also, sensitivity analyses are conducted to evaluate the effect of several important parameters, such as discount and advertisement, on the supply chain .  The results indicate that considering the optimal amount for discount parameter can conceivably enhance total profit by about 20% compared to the time without this discount scheme. When we take the optimized parameter into account for advertisement, 12% is obtained for the total profit. Based on our findings, the more the expected profit value, the higher the total amount of total profit and risk.  The results of this research also provide some interesting managerial insights for managers.


Author(s):  
Jingjing Li ◽  
Qiang Wang ◽  
Wenqi Zhang ◽  
Donghai Shi ◽  
Zhiwei Qin

Influenced by the era of the sharing economy and mobile payment, Dockless Bike-Sharing System (Dockless BSS) is expanding in many major cities. The mobility of users constantly leads to supply and demand imbalance, which seriously affects the total profit and customer satisfaction. In this paper, we propose the Spatio-Temporal Mixed Integer Program (STMIP) with Flow-graphed Community Discovery (FCD) approach to rebalancing the system. Different from existing studies that ignore the route of trucks and adopt a centralized rebalancing, our approach considers the spatio-temporal information of trucks and discovers station communities for truck-based rebalancing. First, we propose the FCD algorithm to detect station communities. Significantly, rebalancing communities decomposes the centralized system into a distributed multi-communities system. Then, by considering the routing and velocity of trucks, we design the STMIP model with the objective of maximizing total profit, to find a repositioning policy for each station community. We design a simulator built on real-world data from DiDi Chuxing to test the algorithm performance. The extensive experimental results demonstrate that our approach outperforms in terms of service level, profit, and complexity compared with the state-of-the-art approach.


Author(s):  
Vishal Badyal ◽  
William G. Ferrell ◽  
Nathan Huynh ◽  
Bhavya Padmanabhan

The objective of this study is to design an intermodal transport network considering multiple planning periods and accounting for product volume, mode, budget, and inventory at intermodal terminals (IMTs). A mixed integer linear programming model is developed. An experimental study is conducted for the State of South Carolina using the Freight Analysis Framework Version 4.5 (FAF4) dataset. Sensitivity analyses are performed to study the impact of budget, the maximum number of IMTs allowed, and increasing demand on the intermodal network design. The experimental results indicate that Columbia as an IMT location has a significantly effects on the total network cost and intermodal shipping share. Increasing the budget and number of IMTs allowed improved the network performance non-linearly.


2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


2018 ◽  
Vol 8 (10) ◽  
pp. 1978 ◽  
Author(s):  
Jaber Valinejad ◽  
Taghi Barforoshi ◽  
Mousa Marzband ◽  
Edris Pouresmaeil ◽  
Radu Godina ◽  
...  

This paper presents the analysis of a novel framework of study and the impact of different market design criterion for the generation expansion planning (GEP) in competitive electricity market incentives, under variable uncertainties in a single year horizon. As investment incentives conventionally consist of firm contracts and capacity payments, in this study, the electricity generation investment problem is considered from a strategic generation company (GENCO) ′ s perspective, modelled as a bi-level optimization method. The first-level includes decision steps related to investment incentives to maximize the total profit in the planning horizon. The second-level includes optimization steps focusing on maximizing social welfare when the electricity market is regulated for the current horizon. In addition, variable uncertainties, on offering and investment, are modelled using set of different scenarios. The bi-level optimization problem is then converted to a single-level problem and then represented as a mixed integer linear program (MILP) after linearization. The efficiency of the proposed framework is assessed on the MAZANDARAN regional electric company (MREC) transmission network, integral to IRAN interconnected power system for both elastic and inelastic demands. Simulations show the significance of optimizing the firm contract and the capacity payment that encourages the generation investment for peak technology and improves long-term stability of electricity markets.


2020 ◽  
Vol 12 (3) ◽  
pp. 1131
Author(s):  
Wenliang Zhou ◽  
Xiaorong You ◽  
Wenzhuang Fan

To avoid conflicts among trains at stations and provide passengers with a periodic train timetable to improve service level, this paper mainly focuses on the problem of multi-periodic train timetabling and routing by optimizing the routes of trains at stations and their entering time and leaving time on each chosen arrival–departure track at each visited station. Based on the constructed directed graph, including unidirectional and bidirectional tracks at stations and in sections, a mixed integer linear programming model with the goal of minimizing the total travel time of trains is formulated. Then, a strategy is introduced to reduce the number of constraints for improving the solved efficiency of the model. Finally, the performance, stability and practicability of the proposed method, as well as the impact of some main factors on the model are analyzed by numerous instances on both a constructed railway network and Guang-Zhu inter-city railway; they are solved using the commercial solver WebSphere ILOG CPLEX (International Business Machines Corporation, New York, NY, USA). Experimental results show that integrating multi-periodic train timetabling and routing can be conducive to improving the quality of a train timetable. Hence, good economic and social benefits for high-speed rail can be achieved, thus, further contributing to the sustained development of both high-speed railway systems and society.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Amir-Mohammad Golmohammadi ◽  
Hasan Rasay ◽  
Zaynab Akhoundpour Amiri ◽  
Maryam Solgi ◽  
Negar Balajeh

Machine learning, neural networks, and metaheuristic algorithms are relatively new subjects, closely related to each other: learning is somehow an intrinsic part of all of them. On the other hand, cell formation (CF) and facility layout design are the two fundamental steps in the CMS implementation. To get a successful CMS design, addressing the interrelated decisions simultaneously is important. In this article, a new nonlinear mixed-integer programming model is presented which comprehensively considers solving the integrated dynamic cell formation and inter/intracell layouts in continuous space. In the proposed model, cells are configured in flexible shapes during the planning horizon considering cell capacity in each period. This study considers the exact information about facility layout design and material handling cost. The proposed model is an NP-hard mixed-integer nonlinear programming model. To optimize the proposed problem, first, three metaheuristic algorithms, that is, Genetic Algorithm (GA), Keshtel Algorithm (KA), and Red Deer Algorithm (RDA), are employed. Then, to further improve the quality of the solutions, using machine learning approaches and combining the results of the aforementioned algorithms, a new metaheuristic algorithm is proposed. Numerical examples, sensitivity analyses, and comparisons of the performances of the algorithms are conducted.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012096
Author(s):  
Christoph Waibel ◽  
Shanshan Hsieh ◽  
Arno Schlüter

Abstract This paper demonstrates the impact of demand response (DR) on optimal multi-energy systems (MES) design with building integrated photovoltaics (BIPV) on roofs and façades. Building loads and solar potentials are assessed using bottom-up models; the MES design is determined using a Mixed-Integer Linear Programming model (energy hub). A mixed-use district of 170,000 m2 floor area including office, residential, retail, education, etc. is studied under current and future climate conditions in Switzerland and Singapore. Our findings are consistent with previous studies, which indicate that DR generally leads to smaller system capacities due to peak shaving. We further show that in both the Swiss and Singapore context, cost and emissions of the MES can be reduced significantly with DR. Applying DR, the optimal area for BIPV placement increases only marginally for Singapore (~1%), whereas for Switzerland, the area is even reduced by 2-8%, depending on the carbon target. In conclusion, depending on the context, DR can have a noticeable impact on optimal MES and BIPV capacities and should thus be considered in the design of future, energy efficient districts.


Author(s):  
Jun Zhao ◽  
Lixiang Huang

The management of hazardous wastes in regions is required to design a multi-echelon network with multiple facilities including recycling, treatment and disposal centers servicing the transportation, recycling, treatment and disposal procedures of hazardous wastes and waste residues. The multi-period network design problem within is to determine the location of waste facilities and allocation/transportation of wastes/residues in each period during the planning horizon, such that the total cost and total risk in the location and transportation procedures are minimized. With consideration of the life cycle capacity of disposal centers, we formulate the problem as a bi-objective mixed integer linear programming model in which a unified modeling strategy is designed to describe the closing of existing waste facilities and the opening of new waste facilities. By exploiting the characteristics of the proposed model, an augmented ε -constraint algorithm is developed to solve the model and find highly qualified representative non-dominated solutions. Finally, computational results of a realistic case demonstrate that our algorithm can identify obviously distinct and uniformly distributed representative non-dominated solutions within reasonable time, revealing the trade-off between the total cost and total risk objectives efficiently. Meanwhile, the multi-period network design optimization is superior to the single-period optimization in terms of the objective quality.


Sign in / Sign up

Export Citation Format

Share Document