ANFIS soft sensing model of SMB chromatographic separation process based on new adaptive population evolution particle swarm optimization algorithm

2021 ◽  
pp. 1-26
Author(s):  
Dan Wang ◽  
Jie-Sheng Wang ◽  
Shao-Yan Wang ◽  
Cheng Xing ◽  
Xu-Dong Li

Aiming at predicting the purity of the extract and raffinate components in the simulated moving bed (SMB) chromatographic separation process, a soft-sensor modeling method was proposed by adoptig the hybrid learning algorithm based on an improved particle swarm optimization (PSO) algorithm and the least means squares (LMS) method to optimize the adaptive neural fuzzy inference system (ANFIS) parameters. The hybrid learning algorithm includes a premise parameter learning phase and a conclusion parameter learning phase. In the premise parameter learning stage, the input data space division of the SMB chromatographic separation process and the initialization of the premise parameters are realized based on the fuzzy C-means (FCM) clustering algorithm. Then, the improved PSO algorithm is used to calculate the excitation intensity and normalized excitation intensity of all the rules for each individual in the population. In the conclusion parameter learning phase, these linear parameters are identified by the LMS method. In order to improve population diversity and convergence accuracy, the population evolution rate function was defined. According to the relationship between population diversity, population fitness function and particle position change, a new adaptive population evolution particle swarm optimization (NAPEPSO) algorithm was proposed. The inertia weight is adaptively adjusted according to the evolution of the population and the change of the particle position, thereby improving the diversity of the particle swarm and the ability of the algorithm to jump out of the local optimal solution. The simulation results show that the proposed soft-sensor model can effectively predict the key economic and technical indicators of the SMB chromatographic separation process so as to meet the real-time and efficient operation of the SMB chromatographic separation process.

Author(s):  
Wei Li ◽  
Xiang Meng ◽  
Ying Huang ◽  
Soroosh Mahmoodi

AbstractMultiobjective particle swarm optimization (MOPSO) algorithm faces the difficulty of prematurity and insufficient diversity due to the selection of inappropriate leaders and inefficient evolution strategies. Therefore, to circumvent the rapid loss of population diversity and premature convergence in MOPSO, this paper proposes a knowledge-guided multiobjective particle swarm optimization using fusion learning strategies (KGMOPSO), in which an improved leadership selection strategy based on knowledge utilization is presented to select the appropriate global leader for improving the convergence ability of the algorithm. Furthermore, the similarity between different individuals is dynamically measured to detect the diversity of the current population, and a diversity-enhanced learning strategy is proposed to prevent the rapid loss of population diversity. Additionally, a maximum and minimum crowding distance strategy is employed to obtain excellent nondominated solutions. The proposed KGMOPSO algorithm is evaluated by comparisons with the existing state-of-the-art multiobjective optimization algorithms on the ZDT and DTLZ test instances. Experimental results illustrate that KGMOPSO is superior to other multiobjective algorithms with regard to solution quality and diversity maintenance.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


Author(s):  
Jiarui Zhou ◽  
Junshan Yang ◽  
Ling Lin ◽  
Zexuan Zhu ◽  
Zhen Ji

Particle swarm optimization (PSO) is a swarm intelligence algorithm well known for its simplicity and high efficiency on various problems. Conventional PSO suffers from premature convergence due to the rapid convergence speed and lack of population diversity. It is easy to get trapped in local optima. For this reason, improvements are made to detect stagnation during the optimization and reactivate the swarm to search towards the global optimum. This chapter imposes the reflecting bound-handling scheme and von Neumann topology on PSO to increase the population diversity. A novel crown jewel defense (CJD) strategy is introduced to restart the swarm when it is trapped in a local optimum region. The resultant algorithm named LCJDPSO-rfl is tested on a group of unimodal and multimodal benchmark functions with rotation and shifting. Experimental results suggest that the LCJDPSO-rfl outperforms state-of-the-art PSO variants on most of the functions.


Author(s):  
Shoubao Su ◽  
Zhaorui Zhai ◽  
Chishe Wang ◽  
Kaimeng Ding

The traditional fractional-order particle swarm optimization (FOPSO) algorithm depends on the fractional order [Formula: see text], and it is easy to fall into local optimum. To overcome these disadvantages, a novel perspective with PID gains tuning procedure is proposed by combining the time factor with FOPSO, i.e. a new fractional-order particle swarm optimization called TFFV-PSO, which reduces the dependence on the fractional order to enhance the ability of particles to escape from local optimums. According to its influence on the performance of the algorithm, the time factor is varied with population diversity parameters to balance the exploration and exploitation capabilities of the particle swarm, so as to adjust the convergence speed of the algorithm, then it follows that a better convergence performance will be obtained. The improved method is tested on several benchmark functions and applied to tune the PID controller parameters. The experimental results and the comparison with previous other methods show that our proposed TFFV-PSO provides an adequate velocity of convergence and a satisfying accuracy, as well as even better robustness.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4620 ◽  
Author(s):  
Junfeng Xin ◽  
Jiabao Zhong ◽  
Shixin Li ◽  
Jinlu Sheng ◽  
Ying Cui

Recently, issues of climate change, environment abnormality, individual requirements, and national defense have caused extensive attention to the commercial, scientific, and military development of unmanned surface vehicles (USVs). In order to design high-quality routes for a multi-sensor integrated USV, this work improves the conventional particle swarm optimization algorithm by introducing the greedy mechanism and the 2-opt operation, based on a combination strategy. First, a greedy black box is established for particle initialization, overcoming the randomness of the conventional method and excluding a great number of infeasible solutions. Then the greedy selection strategy and 2-opt operation are adopted together for local searches, to maintain population diversity and eliminate path crossovers. In addition, Monte-Carlo simulations of eight instances are conducted to compare the improved algorithm with other existing algorithms. The computation results indicate that the improved algorithm has the superior performance, with the shortest route and satisfactory robustness, although a fraction of computing efficiency becomes sacrificed. Moreover, the effectiveness and reliability of the improved method is also verified by its multi-sensor-based application to a USV model in real marine environments.


2008 ◽  
Vol 18 (12) ◽  
pp. 3611-3624 ◽  
Author(s):  
H. L. WEI ◽  
S. A. BILLINGS

Particle swarm optimization (PSO) is introduced to implement a new constructive learning algorithm for training generalized cellular neural networks (GCNNs) for the identification of spatio-temporal evolutionary (STE) systems. The basic idea of the new PSO-based learning algorithm is to successively approximate the desired signal by progressively pursuing relevant orthogonal projections. This new algorithm will thus be referred to as the orthogonal projection pursuit (OPP) algorithm, which is in mechanism similar to the conventional projection pursuit approach. A novel two-stage hybrid training scheme is proposed for constructing a parsimonious GCNN model. In the first stage, the orthogonal projection pursuit algorithm is applied to adaptively and successively augment the network, where adjustable parameters of the associated units are optimized using a particle swarm optimizer. The resultant network model produced at the first stage may be redundant. In the second stage, a forward orthogonal regression (FOR) algorithm, aided by mutual information estimation, is applied to refine and improve the initially trained network. The effectiveness and performance of the proposed method is validated by applying the new modeling framework to a spatio-temporal evolutionary system identification problem.


2010 ◽  
Vol 20-23 ◽  
pp. 1280-1285
Author(s):  
Jian Xiang Wei ◽  
Yue Hong Sun

The particle swarm optimization (PSO) algorithm is a new population search strategy, which has exhibited good performance through well-known numerical test problems. However, it is easy to trap into local optimum because the population diversity becomes worse during the evolution. In order to overcome the shortcoming of the PSO, this paper proposes an improved PSO based on the symmetry distribution of the particle space position. From the research of particle movement in high dimensional space, we can see: the more symmetric of the particle distribution, the bigger probability can the algorithm be during converging to the global optimization solution. A novel population diversity function is put forward and an adjustment algorithm is put into the basic PSO. The steps of the proposed algorithm are given in detail. With two typical benchmark functions, the experimental results show the improved PSO has better convergence precision than the basic PSO.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yuntao Dai ◽  
Liqiang Liu ◽  
Shanshan Feng

A mathematical model must be established to study the motions of ships in order to control them effectively. An assessment of the model depends on the accuracy of hydrodynamic parameters. An algorithm for the parameter identification of the coupled pitch and heave motions in ships is, thus, put forward in this paper. The algorithm proposed is based on particle swarm optimization (PSO) and the opposition-based learning theory known as opposition-based particle swarm optimization (OPSO). A definition of the opposition-based learning algorithm is given first of all, with ideas on how to improve this algorithm and its process being presented next. Secondly, the design of the parameter identification algorithm is put forward, modeling the disturbing force and disturbing moment of the identification system and the output parameters of the identification system. Then, the problem involving the hydrodynamic parameters of motions is identified and the coupled pitch and heave motions of a ship described as an optimization problem with constraints. Finally, the numerical simulations of different sea conditions with unknown parameters are carried out using the PSO and OPSO algorithms. The simulation results show that the OPSO algorithm is relatively stable in terms of the hydrodynamic parameters identification of the coupled pitch and heave motions.


Sign in / Sign up

Export Citation Format

Share Document