The operational properties of linguistic interval valued q-Rung orthopair fuzzy information and its VIKOR model for multi-attribute group decision making

2021 ◽  
pp. 1-17
Author(s):  
Shahid Hussain Gurmani ◽  
Huayou Chen ◽  
Yuhang Bai

As a generalization of linguistic q-rung orthopair fuzzy set (Lq-ROFS), linguistic interval valued q-Rung orthopair fuzzy set (LIVq-ROFS) is a new concept to deal with complex and uncertain decision making problems which Lq-ROFS cannot handle. Due to the lack of information in decision making process, decision makers mostly prefer to give their preferences in interval form rather than a crisp number. In this situations, LIVq-ROFS appears up as a useful tool. In this work, we define operational laws of LIVq-ROFS and prove some properties. Furthermore, we propose the conception of the LIVq-ROF weighted averaging operator and give its formula by mathematical induction. To compare two or more linguistic interval valued q-Rung orthopair fuzzy numbers (LIVq-ROFNs), the improved form of score function is also given. Considering the powerfulness of LIVq-ROFSs handling ambiguity and complex uncertainty in practical problems, the key innovation of this paper is to develop the linguistic interval-valued q-rung orthopair fuzzy VIKOR model that is significantly different from the existing VIKOR methodology. The computing steps of this newly created model are briefly presented. Finally, the effectiveness of model is verified by an example and through comparative analysis, the superiority of VIKOR method is further illustrated.

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 145
Author(s):  
Yun Jin ◽  
Zareena Kousar ◽  
Kifayat Ullah ◽  
Tahir Mahmood ◽  
Nimet Yapici Pehlivan ◽  
...  

Interval-valued T-spherical fuzzy set (IVTSFS) handles uncertain and vague information by discussing their membership degree (MD), abstinence degree (AD), non-membership degree (NMD), and refusal degree (RD). MD, AD, NMD, and RD are defined in terms of closed subintervals of that reduce information loss compared to the T-spherical fuzzy set (TSFS), which takes crisp values from intervals; hence, some information may be lost. The purpose of this manuscript is to develop some Hamacher aggregation operators (HAOs) in the environment of IVTSFSs. To do so, some Hamacher operational laws based on Hamacher t-norms (HTNs) and Hamacher t-conorms (HTCNs) are introduced. Using Hamacher operational laws, we develop some aggregation operators (AOs), including an interval-valued T-spherical fuzzy Hamacher (IVTSFH) weighted averaging (IVTSFHWA) operator, an IVTSFH-ordered weighted averaging (IVTSFHOWA) operator, an IVTSFH hybrid averaging (IVTSFHHA) operator, an IVTSFH-weighted geometric (IVTSFHWG) operator, an IVTSFH-ordered weighted geometric (IVTSFHOWG) operator, and an IVTSFH hybrid geometric (IVTSFHHG) operator. The validation of the newly developed HAOs is investigated, and their basic properties are examined. In view of some restrictions, the generalization and proposed HAOs are shown, and a multi-attribute decision-making (MADM) procedure is explored based on the HAOs, which are further exemplified. Finally, a comparative analysis of the proposed work is also discussed with previous literature to show the superiority of our work.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Maoyin Zhang ◽  
Tingting Zheng ◽  
Wanrong Zheng ◽  
Ligang Zhou

Pythagorean hesitant fuzzy sets are widely watched because of their excellent ability to deal with uncertainty, imprecise and vague information. This paper extends Pythagorean hesitant fuzzy environments to interval-valued Pythagorean hesitant fuzzy environments and proposes the concept of interval-valued Pythagorean hesitant fuzzy set (IVPHFS), which allows the membership of each object to be a set of several pairs of possible interval-valued Pythagorean fuzzy elements. Furthermore, we develop a series of aggregation operators for interval-valued Pythagorean hesitant fuzzy information and apply them to multiattribute group decision-making (MAGDM) problems. Then, some desired operational laws and properties of IVPHFSs are studied. Especially, considering an interval-valued Pythagorean fuzzy element (IVPHFE) is formed by several pairs of interval values, this paper proposes the concepts of score function and accuracy function in the form of two interval numbers which can retain interval-valued Pythagorean fuzzy information as much as possible. Then, the relationship among these operators is discussed by comparing the interval numbers. Eventually, an illustrative example fully shows the feasibility, practicality, and effectiveness of the proposed approach.


Author(s):  
John Robinson P. ◽  
Henry Amirtharaj E. C.

Correlation coefficient of Intuitionistic Fuzzy Set (IFS), Interval valued IFS, Triangular IFS and Trapezoidal IFS are already present in the literature. This paper proposes the correlation coefficient for Triangular Fuzzy Intuitionistic Fuzzy set (TrFIFS). The method on uncertain Multiple Attribute Group Decision Making (MAGDM) problems based on aggregating intuitionistic fuzzy information is investigated for TrFIFSs. The Triangular Fuzzy Intuitionistic Fuzzy Ordered Weighted Averaging (TrFIFOWA) operator is proposed for TrFIFSs and the Triangular Fuzzy Intuitionistic Fuzzy Ordered Weighted Geometric (TrFIFOWG) operator is utilized for decision making models where expert weights are completely unknown. Based on these operators and the correlation coefficient defined for the TrFIFSs, new decision making models are proposed with numerical illustrations. Some comparisons are also made with existing ranking methods for validity.


2018 ◽  
Vol 29 (1) ◽  
pp. 393-408 ◽  
Author(s):  
Khaista Rahman ◽  
Saleem Abdullah ◽  
Muhammad Sajjad Ali Khan

Abstract In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the proposed operators is that these operators give a more complete view of the problem to the decision makers. These operators provide more accurate and precise results as compared the existing method. Finally, we apply these operators to deal with multiple-attribute group decision making under interval-valued Pythagorean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making. Lastly, we also construct a numerical example for multiple-attribute group decision making.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1575
Author(s):  
Mabruka Ali ◽  
Adem Kiliçman ◽  
Azadeh Zahedi Khameneh

Ranking interval-valued fuzzy soft sets is an increasingly important research issue in decision making, and provides support for decision makers in order to select the optimal alternative under an uncertain environment. Currently, there are three interval-valued fuzzy soft set-based decision-making algorithms in the literature. However, these algorithms are not able to overcome the issue of comparable alternatives and, in fact, might be ignored due to the lack of a comprehensive priority approach. In order to provide a partial solution to this problem, we present a group decision-making solution which is based on a preference relationship of interval-valued fuzzy soft information. Further, corresponding to each parameter, two crisp topological spaces, namely, lower topology and upper topology, are introduced based on the interval-valued fuzzy soft topology. Then, using the preorder relation on a topological space, a score function-based ranking system is also defined to design an adjustable multi-steps algorithm. Finally, some illustrative examples are given to compare the effectiveness of the present approach with some existing methods.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 357 ◽  
Author(s):  
Kifayat Ullah ◽  
Nasruddin Hassan ◽  
Tahir Mahmood ◽  
Naeem Jan ◽  
Mazlan Hassan

Expressing the measure of uncertainty, in terms of an interval instead of a crisp number, provides improved results in fuzzy mathematics. Several such concepts are established, including the interval-valued fuzzy set, the interval-valued intuitionistic fuzzy set, and the interval-valued picture fuzzy set. The goal of this article is to enhance the T-spherical fuzzy set (TSFS) by introducing the interval-valued TSFS (IVTSFS), which describes the uncertainty measure in terms of the membership, abstinence, non-membership, and the refusal degree. The novelty of the IVTSFS over the pre-existing fuzzy structures is analyzed. The basic operations are proposed for IVTSFSs and their properties are investigated. Two aggregation operators for IVTSFSs are developed, including weighted averaging and weighted geometric operators, and their validity is examined using the induction method. Several consequences of new operators, along with their comparative studies, are elaborated. A multi-attribute decision-making method in the context of IVTSFSs is developed, followed by a brief numerical example where the selection of the best policy, among a list of investment policies of a multinational company, is to be evaluated. The advantages of using the framework of IVTSFSs are described theoretically and numerically, hence showing the limitations of pre-existing aggregation operators.


Author(s):  
Hu-Chen Liu ◽  
Qing-Lian Lin ◽  
Jing Wu

Consider the various types of uncertain preference information provided by the decision makers and the importance of determining the associated weights for the aggregation operator, the multiple attribute group decision making (MAGDM) methods based on some dependent interval 2-tuple linguistic aggregation operators are proposed in this paper. Firstly some operational laws and possibility degree of interval 2-tuple linguistic variables are introduced. Then, we develop a dependent interval 2-tuple weighted averaging (DITWA) operator and a dependent interval 2-tuple weighted geometric (DITWG) operator, in which the associated weights only depend on the aggregated interval 2-tuple arguments and can relieve the influence of unfair arguments on the aggregated results by assigning low weights to them. Based on the DITWA and the DITWG operators, some approaches for multiple attribute group decision making with interval 2-tuple linguistic information are proposed. Finally, an illustrative example is given to demonstrate the practicality and effectiveness of the proposed approaches.


2018 ◽  
Vol 14 (03) ◽  
pp. 343-361 ◽  
Author(s):  
K. Rahman ◽  
A. Ali ◽  
S. Abdullah ◽  
F. Amin

Interval-valued Pythagorean fuzzy set is one of the successful extensions of the interval-valued intuitionistic fuzzy set for handling the uncertainties in the data. Under this environment, in this paper, we introduce the notion of induced interval-valued Pythagorean fuzzy Einstein ordered weighted averaging (I-IVPFEOWA) aggregation operator. Some of its desirable properties namely, idempotency, boundedness, commutatively, monotonicity have also been proved. The main advantage of using the proposed operator is that this operator gives a more complete view of the problem to the decision-makers. The method proposed in this paper provides more general, more accurate and precise results as compared to the existing methods. Therefore this method play a vital role in real world problems. Finally, we apply the proposed operator to deal with multi-attribute group decision- making problems under interval-valued Pythagorean fuzzy information. The approach has been illustrated with a numerical example from the field of the decision-making problems to show the validity, practicality and effectiveness of the new approach.


2020 ◽  
Vol 39 (3) ◽  
pp. 4763-4783
Author(s):  
Muhammad Akram ◽  
Xindong Peng ◽  
Ahmad N. Al-Kenani ◽  
Aqsa Sattar

Complex Pythagorean fuzzy (CPF), a worthwhile generalization of Pythagorean fuzzy set, is a powerful tool to deal with two-dimensional or periodic information. In this paper, we develop two prioritized aggregation operators (AOs) under CPF environment, namely, complex Pythagorean fuzzy prioritized weighted averaging (CPFPWA) operator and complex Pythagorean fuzzy prioritized weighted geometric (CPFPWG) operator. We consider the prioritization relationship among criteria and decision makers (DMs) to make our result more accurate as in real decision making (DM) problems, the criteria and DMs have different priority level. Further, we discuss remarkable properties of our proposed AOs. Moreover, we promote the evolution of MCDM problem by investigating an algorithm in CPF environment with its flow chart. Finally, to check the superiority and validity of proposed operators, we compare the computed results with the different existing techniques.


Sign in / Sign up

Export Citation Format

Share Document