scholarly journals Pseudonymization of PHI Items in German Clinical Reports

Author(s):  
Christina Lohr ◽  
Elisabeth Eder ◽  
Udo Hahn

We describe the adaptation of a non-clinical pseudonymization system, originally developed for a German email corpus, for clinical use. This tool replaces previously identified Protected Health Information (PHI) items as carriers of privacy-sensitive information (original names for people, organizations, places, etc.) with semantic type-conformant, yet, fictitious surrogates. We evaluate the generated substitutes for grammatical correctness, semantic and medical plausibility and find particularly low numbers of error instances (less than 1%) on all of these dimensions.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jitendra Jonnagaddala ◽  
Aipeng Chen ◽  
Sean Batongbacal ◽  
Chandini Nekkantti

AbstractFor research purposes, protected health information is often redacted from unstructured electronic health records to preserve patient privacy and confidentiality. The OpenDeID corpus is designed to assist development of automatic methods to redact sensitive information from unstructured electronic health records. We retrieved 4548 unstructured surgical pathology reports from four urban Australian hospitals. The corpus was developed by two annotators under three different experimental settings. The quality of the annotations was evaluated for each setting. Specifically, we employed serial annotations, parallel annotations, and pre-annotations. Our results suggest that the pre-annotations approach is not reliable in terms of quality when compared to the serial annotations but can drastically reduce annotation time. The OpenDeID corpus comprises 2,100 pathology reports from 1,833 cancer patients with an average of 737.49 tokens and 7.35 protected health information entities annotated per report. The overall inter annotator agreement and deviation scores are 0.9464 and 0.9726, respectively. Realistic surrogates are also generated to make the corpus suitable for distribution to other researchers.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael Rutherford ◽  
Seong K. Mun ◽  
Betty Levine ◽  
William Bennett ◽  
Kirk Smith ◽  
...  

AbstractWe developed a DICOM dataset that can be used to evaluate the performance of de-identification algorithms. DICOM objects (a total of 1,693 CT, MRI, PET, and digital X-ray images) were selected from datasets published in the Cancer Imaging Archive (TCIA). Synthetic Protected Health Information (PHI) was generated and inserted into selected DICOM Attributes to mimic typical clinical imaging exams. The DICOM Standard and TCIA curation audit logs guided the insertion of synthetic PHI into standard and non-standard DICOM data elements. A TCIA curation team tested the utility of the evaluation dataset. With this publication, the evaluation dataset (containing synthetic PHI) and de-identified evaluation dataset (the result of TCIA curation) are released on TCIA in advance of a competition, sponsored by the National Cancer Institute (NCI), for algorithmic de-identification of medical image datasets. The competition will use a much larger evaluation dataset constructed in the same manner. This paper describes the creation of the evaluation datasets and guidelines for their use.


Author(s):  
G. Sridevi Devasena ◽  
S. Kanmani

<p>Wireless Body Area Networks (WBANs) are fundamental technology in health care that permits the information of a patient’s essential body parameters to be gathered by the sensors. However, the safety and concealment defense of the gathered information is a key uncertain problem. A Hybrid Key Management (HKM) scheme [13] is worked based on Public Key Cryptography (PKC)-authentication scheme. This scheme uses a oneway hash function to construct a Merkle Tree. The PKC method increase the computational complexity and lacking scalability. Additionally, it increases expensive computation, communication costs and delay. To overcome this problem, Robust Security for Protected Health Information by ECC with signature Hash Function in WBAN (RSP) is proposed. The system employs hash-chain based key signature technique to achieve efficient, secure transmission from sensor to user in WBAN. Moreover, Elliptical Curve Cryptography algorithm is used to verifies the authenticate sensor. In addition, it describes the experimental results of the proposed system demonstrate the efficient data communication in a network.</p>


Author(s):  
Mike Gregory ◽  
Cynthia Roberts

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) was initially enacted as an administrative simplification to standardize electronic transmission of common administrative and financial transactions. The program also calls for implementation specifications regarding privacy and security standards to protect the confidentiality and integrity of individually identifiable health information or protected health information. The Affordable Care Act further expanded many of the protective provisions set forth by HIPAA. Since its implementation, healthcare organizations around the nation have invested billions of dollars and have cycled through numerous program attempts aimed at meeting these standards. This chapter reviews the process taken by one organization to review the privacy policy in place utilizing a maturity model, identify deficiencies, and lead change in order to heighten the maturity of the system. The authors conclude with reflection related to effectiveness of the process as well as implications for practice.


Author(s):  
Roy Rada

Privacy and security of health information is a global concern. However, this chapter will focus on approaches to security in the United States. In particular, the federal regulation of security in the form of the Security Rule will be studied. The HIPAA Security Rule details the system and administrative requirements that a covered entity must meet in order to assure that health information is safe from people without authorization for its access. By contrast, the Privacy Rule describes the requirements that govern the circumstances under which protected health information must be used or disclosed with and without patient involvement and when a patient may have access to his or her protected health information. The implementation of reasonable and appropriate security measures supports compliance with the Privacy Rule.


Sign in / Sign up

Export Citation Format

Share Document