scholarly journals Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor

2021 ◽  
Author(s):  
Farshad Bakhshandegan Moghaddam ◽  
Carsten Draschner ◽  
Jens Lehmann ◽  
Hajira Jabeen

The last decades have witnessed significant advancements in terms of data generation, management, and maintenance. This has resulted in vast amounts of data becoming available in a variety of forms and formats including RDF. As RDF data is represented as a graph structure, applying machine learning algorithms to extract valuable knowledge and insights from them is not straightforward, especially when the size of the data is enormous. Although Knowledge Graph Embedding models (KGEs) convert the RDF graphs to low-dimensional vector spaces, these vectors often lack the explainability. On the contrary, in this paper, we introduce a generic, distributed, and scalable software framework that is capable of transforming large RDF data into an explainable feature matrix. This matrix can be exploited in many standard machine learning algorithms. Our approach, by exploiting semantic web and big data technologies, is able to extract a variety of existing features by deep traversing a given large RDF graph. The proposed framework is open-source, well-documented, and fully integrated into the active community project Semantic Analytics Stack (SANSA). The experiments on real-world use cases disclose that the extracted features can be successfully used in machine learning tasks like classification and clustering.

Author(s):  
Qianfan Wu ◽  
Adel Boueiz ◽  
Alican Bozkurt ◽  
Arya Masoomi ◽  
Allan Wang ◽  
...  

Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough performance in several areas including image recognition, natural language processing, and speech recognition. However, the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this article, we performed a review on the four relevant articles that we found through our thorough literature review. All four articles used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. This deep learning approach outperformed existing prediction approaches, such as prediction based on probe-wise screening and prediction based on principal component analysis. The limitations of the current deep learning approach and possible improvements were also discussed.


2018 ◽  
Author(s):  
Qianfan Wu ◽  
Adel Boueiz ◽  
Alican Bozkurt ◽  
Arya Masoomi ◽  
Allan Wang ◽  
...  

Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough performance in several areas including image recognition, natural language processing, and speech recognition. However, the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this article, we performed a review on the four relevant articles that we found through our thorough literature review. All four articles used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. This deep learning approach outperformed existing prediction approaches, such as prediction based on probe-wise screening and prediction based on principal component analysis. The limitations of the current deep learning approach and possible improvements were also discussed.


Author(s):  
V. V. Danilov ◽  
O. M. Gerget ◽  
D. Y. Kolpashchikov ◽  
N. V. Laptev ◽  
R. A. Manakov ◽  
...  

Abstract. In the era of data-driven machine learning algorithms, data represents a new oil. The application of machine learning algorithms shows they need large heterogeneous datasets that crucially are correctly labeled. However, data collection and its labeling are time-consuming and labor-intensive processes. A particular task we solve using machine learning is related to the segmentation of medical devices in echocardiographic images during minimally invasive surgery. However, the lack of data motivated us to develop an algorithm generating synthetic samples based on real datasets. The concept of this algorithm is to place a medical device (catheter) in an empty cavity of an anatomical structure, for example, in a heart chamber, and then transform it. To create random transformations of the catheter, the algorithm uses a coordinate system that uniquely identifies each point regardless of the bend and the shape of the object. It is proposed to take a cylindrical coordinate system as a basis, modifying it by replacing the Z-axis with a spline along which the h-coordinate is measured. Having used the proposed algorithm, we generated new images with the catheter inserted into different heart cavities while varying its location and shape. Afterward, we compared the results of deep neural networks trained on the datasets comprised of real and synthetic data. The network trained on both real and synthetic datasets performed more accurate segmentation than the model trained only on real data. For instance, modified U-net trained on combined datasets performed segmentation with the Dice similarity coefficient of 92.6±2.2%, while the same model trained only on real samples achieved the level of 86.5±3.6%. Using a synthetic dataset allowed decreasing the accuracy spread and improving the generalization of the model. It is worth noting that the proposed algorithm allows reducing subjectivity, minimizing the labeling routine, increasing the number of samples, and improving the heterogeneity.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


2019 ◽  
Vol 1 (2) ◽  
pp. 78-80
Author(s):  
Eric Holloway

Detecting some patterns is a simple task for humans, but nearly impossible for current machine learning algorithms.  Here, the "checkerboard" pattern is examined, where human prediction nears 100% and machine prediction drops significantly below 50%.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1290-P
Author(s):  
GIUSEPPE D’ANNUNZIO ◽  
ROBERTO BIASSONI ◽  
MARGHERITA SQUILLARIO ◽  
ELISABETTA UGOLOTTI ◽  
ANNALISA BARLA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document