Use of a visual guide to improve the quality of VOR responses evoked by high-velocity rotational stimuli

2008 ◽  
Vol 18 (1) ◽  
pp. 15-24
Author(s):  
Claire C. Gianna-Poulin ◽  
Robert J. Peterka

High-velocity rotational stimuli have the potential to improve the diagnostic capabilities of clinical rotation testing by revealing nonlinear vestibulo-ocular reflex (VOR) responses that are indicative of asymmetric vestibular function. However, eye movements evoked by high-velocity rotations often are inconsistent over time and therefore do not yield reliable diagnostic measures. This study investigated whether use of a novel "visual guide" could improve the consistency and quality of VORs obtained during testing with pulse-step-sine (PSS) stimuli providing periodic high-velocity, horizontal-plane rotations with peak velocities up to 290 deg/s. The visual guide (narrow phosphorescent line spanning 180° field of view) was mounted horizontally on the rotation chair at the subject's eye level. Eight healthy human subjects were tested either in complete darkness while performing an alerting task, or while viewing the visual guide in an otherwise dark room. We found that the visual guide improved the quality of VOR responses as shown by an increased proportion of slow-phase velocity data segments retained for analysis, by a decreased variance of the processed eye velocity data, and by a reduction of outlying VOR response measures. We also found that the visual guide did not induce visual suppression because VOR gain measures were not diminished.

1995 ◽  
Vol 5 (5) ◽  
pp. 331-347
Author(s):  
B.J. McGrath ◽  
F.E. Guedry ◽  
C.M. Oman ◽  
A.H. Rupert

The vestibulo-ocular reflex (VOR) and spatial orientation perceptions were recorded in 15 subjects during 3 Gz centrifuge runs. These data were obtained to study two issues: (1) to gain insight into reports of asymmetrical disorientation and disturbance during acceleration and deceleration of centrifuge runs like those used to train pilots on the procedures to counteract G-induced loss of consciousness (G-LOC); (2) to study the effects of sustained vertical linear acceleration on the vestibular system. The centrifuge angular velocity profile consisted of a 19 s angular acceleration to 3 Gz that was sustained for 5 min during a period of constant angular velocity, and a 19 s deceleration to 1 Gz. The runs were repeated three times with the subject facing the motion and three times with the subject’s back to the motion. The VOR and spatial orientation perceptions from the eight subjects who completed all six runs were analyzed. The total VOR response during acceleration and deceleration was composed of interacting angular (AVOR) and linear components (LVOR). Asymmetries in pitch orientation perception between centrifuge acceleration and deceleration were not matched by asymmetries in the total VOR slow phase velocity. During the constant velocity high-G phase of the run, sustained up-beating LVOR (Lz nystagmus) was present in 14 of the 15 subjects. Significant individual differences in Lz nystagmus were found, but the maximum Lz response in our 15 subjects was probably of insufficient magnitude to degrade visual scan of cockpit instruments. Mean magnitudes ranged from 0 to 10 deg/s at 90 s from onset of centrifuge run.


2004 ◽  
Vol 14 (4) ◽  
pp. 353-359
Author(s):  
A. Schmid-Priscoveanu ◽  
A.A. Kori ◽  
D. Straumann

In a recent study we demonstrated that otolith input modifies the torsional angular vestibulo-ocular reflex (torVOR) of healthy human subjects: Compared to turntable oscillations in supine position, oscillations in upright position increased the gain of torVOR by 0.1 and cancelled the phase lead originating from low-frequency semicircular canal signals. We asked whether these otolith-related changes of torVOR are still present in patients after vestibular neuritis (VN). Eight patients were sinusoidally oscillated about their naso-occipital axis in supine (canal-only stimulation) and upright (canal-and-otolith stimulation) position. Three-dimensional eye movements were recorded with dual search coils. The patients showed similar otolith-related gain and phase changes of the torVOR as healthy subjects: the gain increased by about 0.1 (p < 0.05) and the low-frequency phase lead from semicircular canal signals was abolished. These results indicate that otolith function after VN is still sufficient to interact with semicircular canal signals to optimize torsional gaze stabilization when the head is upright.


2020 ◽  
Vol 5 (2) ◽  
pp. 23
Author(s):  
Felix Haxby ◽  
Mohammad Akrami ◽  
Reza Zamani

The vestibular system is located in the inner ear and is responsible for maintaining balance in humans. Bilateral vestibular dysfunction (BVD) is a disorder that adversely affects vestibular function. This results in symptoms such as postural imbalance and vertigo, increasing the incidence of falls and worsening quality of life. Current therapeutic options are often ineffective, with a focus on symptom management. Artificial stimulation of the vestibular system, via a vestibular prosthesis, is a technique being explored to restore vestibular function. This review systematically searched for literature that reported the effect of artificial vestibular stimulation on human behaviours related to balance, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique. A total of 21 papers matched the inclusion criteria of the literature search conducted using the PubMed and Web of Science databases (February 2019). The populations for these studies included both healthy adults and patients with BVD. In every paper, artificial vestibular stimulation caused an improvement in certain behaviours related to balance, although the extent of the effect varied greatly. Various behaviours were measured such as the vestibulo-ocular reflex, postural sway and certain gait characteristics. Two classes of prosthesis were evaluated and both showed a significant improvement in at least one aspect of balance-related behaviour in every paper included. No adverse effects were reported for prostheses using noisy galvanic vestibular stimulation, however, prosthetic implantation sometimes caused hearing or vestibular loss. Significant heterogeneity in methodology, study population and disease aetiology were observed. The present study confirms the feasibility of vestibular implants in humans for restoring balance in controlled conditions, but more research needs to be conducted to determine their effects on balance in non-clinical settings.


1997 ◽  
Vol 78 (4) ◽  
pp. 2203-2216 ◽  
Author(s):  
Bernhard J. M. Hess ◽  
Dora E. Angelaki

Hess, Bernhard J. M. and Dora E. Angelaki. Kinematic principles of primate rotational vestibulo-ocular reflex. II. Gravity-dependent modulation of primary eye position. J. Neurophysiol. 78: 2203–2216, 1997. The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 ± 0.4° (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation (∼1.4–2.6°). This reduced torsional variation was in contrast to the large torsional spread (well >10–15°) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.


2015 ◽  
Vol 113 (10) ◽  
pp. 3866-3892 ◽  
Author(s):  
James O. Phillips ◽  
Leo Ling ◽  
Kaibao Nie ◽  
Elyse Jameyson ◽  
Christopher M. Phillips ◽  
...  

Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0–400 μA range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear.


Human subjects with maintained reversal of their horizontal field of vision exhibit very substantial adaptive changes in their ‘horizontal’ vestibulo-ocular reflex (v.o.r.). Short durations (8 min) of vision reversal during natural head movement led to 20 % v.o.r. attenuation while long periods (4 weeks) eventually led to approximate reversal of the reflex. The reversed condition is approached by a complex, but highly systematic, series of changes in gain and phase of the reflex response relative to normal. Recovery after return to normal vision exhibits a similar duration, but different pattern, to that of the original adaptation. A chronic cat preparation with long-term optical reversal of vision has now been developed and shows similar adaptive and recovery changes at low test stimulus amplitudes, but different patterns of adaptive response at high amplitudes. An adaptive neural model employing mown vestibulo-ocular pathways is proposed to account for these experimentally observed plastic changes. The model is used to predict the adapted response to patterns of stimulation extending beyond the range of experimental investigation.


2007 ◽  
Vol 18 (03) ◽  
pp. 236-244 ◽  
Author(s):  
Richard A. Roberts ◽  
Richard E. Gans

Blurred vision with head movement is a common symptom reported by patients with vestibular dysfunction affecting the vestibulo-ocular reflex (VOR). Impaired VOR can be measured by comparing visual acuity in which there is no head movement to visual acuity obtained with head movement. A previous study demonstrated that dynamic visual acuity (DVA) testing using vertical head movement revealed deficits in impaired VOR. There is evidence that horizontal head movement is more sensitive to impaired VOR. The objective of this investigation was to compare horizontal and vertical DVA in participants with normal vestibular function (NVF), impaired vestibular function (IVF), and participants with nonvestibular dizziness (NVD). Participants performed the visual acuity task in a baseline condition with no movement and also in two dynamic conditions, horizontal head movement and vertical head movement. Horizontal DVA was twice as sensitive to impaired VOR than vertical DVA. Results suggest that horizontal volitional head movement should be incorporated into tasks measuring functional deficits of impaired VOR. Una visión borrosa con los movimientos de la cabeza es un síntoma común reportado por los pacientes con una disfunción vestibular que afecta el reflejo vestíbulo-ocular (VOR). La alteración en el VOR puede ser medida comparando la aguda visual no acompañada de movimientos de la cabeza, con la aguda visual obtenida con movimientos cefálicos. Un estudio previo demostró que la prueba de aguda visual dinámica (DVA) usando movimiento vertical de la cabeza revelaba deficiencias relacionados con un VOR alterado. Existe evidencia que el movimiento cefálico horizontal es más sensible a un VOR alterado. El objetivo de esta investigación fue comparar el DVA horizontal y vertical en participantes con funcional vestibular normal (NVF), con función vestibular alterada (IVF) y en sujetos con mareo no vestibular (NVD). Los participantes realizaron sus tareas de agudeza visual en una condición basal, sin movimiento, y también en dos condiciones dinámicas, con movimientos de cabeza horizontales y verticales. El DVA horizontal fue dos veces más sensible a un VOR alterado que el DVA vertical. Los resultados sugieren que los movimientos volitivos horizontales de la cabeza deben incorporarse en las tareas que midan deficiencias funcionales con un VOR alterado.


1992 ◽  
Vol 2 (1) ◽  
pp. 59-69
Author(s):  
Robert J. Peterka ◽  
Martha S. Benolken

Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in a subject’s perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function that could be of either central or peripheral origin. Deviations from perfect vestibulo-ocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. We looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflexive and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests in the same subjects of both perceptual bias and VOR symmetry were well correlated.


Sign in / Sign up

Export Citation Format

Share Document