Hybrid clustering system using Nystagmus parameters discrimination for vestibular disorder diagnosis

2020 ◽  
Vol 28 (5) ◽  
pp. 923-938
Author(s):  
Amine Ben Slama ◽  
Hanene Sahli ◽  
Aymen Mouelhi ◽  
Jihene Marrakchi ◽  
Seif Boukriba ◽  
...  

BACKGROUD AND OBJECTIVE: The control of clinical manifestation of vestibular system relies on an optimal diagnosis. This study aims to develop and test a new automated diagnostic scheme for vestibular disorder recognition. METHODS: In this study we stratify the Ellipse-fitting technique using the Video Nysta Gmographic (VNG) sequence to obtain the segmented pupil region. Furthermore, the proposed methodology enabled us to select the most optimum VNG features to effectively conduct quantitative evaluation of nystagmus signal. The proposed scheme using a multilayer neural network classifier (MNN) was tested using a dataset involving 98 patients affected by VD and 41 normal subjects. RESULTS: The new MNN scheme uses only five temporal and frequency parameters selected out of initial thirteen parameters. The scheme generated results reached 94% of classification accuracy. CONCLUSIONS: The developed expert system is promising in solving the problem of VNG analysis and achieving accurate results of vestibular disorder recognition or diagnosis comparing to other methods or classifiers.

Author(s):  
MANICKAVASAGAN. A ◽  
GABRIEL THOMAS ◽  
AL-YAHYAI, R ◽  
HEMA, M

Brightness preserving histogram equalization (BPHE) technique was used to enhance the features to discriminate three dates varieties (Khalas, Fard and Madina). Mean, entropy and kurtosis features were computed from the enhanced images and used in an Artificial Neural Network classifier. The classification efficiency of 4 sets of hidden neurons (5, 10, 20, and 30) was tested and the network with 5 neurons yielded the highest classification accuracy of 95.2%.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012026
Author(s):  
V Vinokurov ◽  
Yu Khristoforova ◽  
O Myakinin ◽  
I Bratchenko ◽  
A Moryatov ◽  
...  

Abstract This paper describes the use and results of a neural network classifier trained on a set of hyperspectral images of benign and malignant neoplasms. The analysis is carried out on 2D images extruded from hyperspectral data. The ranges of wavelengths at which the research is carried out is represented by the intervals 530–570 nm and 600–606 nm, which is caused by the assumption that the analysis of the entire spectral range is redundant and the prospect of saving resources. Melanoma, basal cell carcinoma (BCC), nevus and papilloma are accepted as primary classes, as the most dangerous, most common and non-malignant types of neoplasms, respectively. The neural network classifier is based on a three-block VGG network. With a training set included 1944 images, the classification accuracy for 4 types of samples was 92%.


2020 ◽  
Vol 77 (4) ◽  
pp. 1440-1455 ◽  
Author(s):  
R W Campbell ◽  
P L Roberts ◽  
J Jaffe

Abstract A novel plankton imager was developed and deployed aboard a profiling mooring in Prince William Sound in 2016–2018. The imager consisted of a 12-MP camera and a 0.137× telecentric lens, along with darkfield illumination produced by an in-line ring/condenser lens system. Just under 2.5 × 106 images were collected during 3 years of deployments. A subset of almost 2 × 104 images was manually identified into 43 unique classes, and a hybrid convolutional neural network classifier was developed and trained to identify the images. Classification accuracy varied among the different classes, and applying thresholds to the output of the neural network (interpretable as probabilities or classifier confidence), improved classification accuracy in non-ambiguous groups to between 80% and 100%.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 349-351
Author(s):  
H. Mizuta ◽  
K. Kawachi ◽  
H. Yoshida ◽  
K. Iida ◽  
Y. Okubo ◽  
...  

Abstract:This paper compares two classifiers: Pseudo Bayesian and Neural Network for assisting in making diagnoses of psychiatric patients based on a simple yes/no questionnaire which is provided at the outpatient’s first visit to the hospital. The classifiers categorize patients into three most commonly seen ICD classes, i.e. schizophrenic, emotional and neurotic disorders. One hundred completed questionnaires were utilized for constructing and evaluating the classifiers. Average correct decision rates were 73.3% for the Pseudo Bayesian Classifier and 77.3% for the Neural Network classifier. These rates were higher than the rate which an experienced psychiatrist achieved based on the same restricted data as the classifiers utilized. These classifiers may be effectively utilized for assisting psychiatrists in making their final diagnoses.


2016 ◽  
Vol 7 (2) ◽  
pp. 105-112
Author(s):  
Adhi Kusnadi ◽  
Idul Putra

Stress will definitely be experienced by every human being and the level of stress experienced by each individual is different. Stress experienced by students certainly will disturb their study if it is not handled quickly and appropriately. Therefore we have created an expert system using a neural network backpropagation algorithm to help counselors to predict the stress level of students. The network structure of the experiment consists of 26 input nodes, 5 hidden nodes, and 2 the output nodes, learning rate of 0.1, momentum of 0.1, and epoch of 5000, with a 100% accuracy rate. Index Terms - Stress on study, expert system, neural network, Stress Prediction


Author(s):  
M. Madhumalini ◽  
T. Meera Devi

The article has been withdrawn on the request of the authors and the editor of the journal Current Signal Transduction Therapy. Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers, if and when the article is accepted for publication.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document