scholarly journals Neural network classifier for hyperspectral images of skin pathologies

2021 ◽  
Vol 2127 (1) ◽  
pp. 012026
Author(s):  
V Vinokurov ◽  
Yu Khristoforova ◽  
O Myakinin ◽  
I Bratchenko ◽  
A Moryatov ◽  
...  

Abstract This paper describes the use and results of a neural network classifier trained on a set of hyperspectral images of benign and malignant neoplasms. The analysis is carried out on 2D images extruded from hyperspectral data. The ranges of wavelengths at which the research is carried out is represented by the intervals 530–570 nm and 600–606 nm, which is caused by the assumption that the analysis of the entire spectral range is redundant and the prospect of saving resources. Melanoma, basal cell carcinoma (BCC), nevus and papilloma are accepted as primary classes, as the most dangerous, most common and non-malignant types of neoplasms, respectively. The neural network classifier is based on a three-block VGG network. With a training set included 1944 images, the classification accuracy for 4 types of samples was 92%.

2020 ◽  
Vol 77 (4) ◽  
pp. 1440-1455 ◽  
Author(s):  
R W Campbell ◽  
P L Roberts ◽  
J Jaffe

Abstract A novel plankton imager was developed and deployed aboard a profiling mooring in Prince William Sound in 2016–2018. The imager consisted of a 12-MP camera and a 0.137× telecentric lens, along with darkfield illumination produced by an in-line ring/condenser lens system. Just under 2.5 × 106 images were collected during 3 years of deployments. A subset of almost 2 × 104 images was manually identified into 43 unique classes, and a hybrid convolutional neural network classifier was developed and trained to identify the images. Classification accuracy varied among the different classes, and applying thresholds to the output of the neural network (interpretable as probabilities or classifier confidence), improved classification accuracy in non-ambiguous groups to between 80% and 100%.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 349-351
Author(s):  
H. Mizuta ◽  
K. Kawachi ◽  
H. Yoshida ◽  
K. Iida ◽  
Y. Okubo ◽  
...  

Abstract:This paper compares two classifiers: Pseudo Bayesian and Neural Network for assisting in making diagnoses of psychiatric patients based on a simple yes/no questionnaire which is provided at the outpatient’s first visit to the hospital. The classifiers categorize patients into three most commonly seen ICD classes, i.e. schizophrenic, emotional and neurotic disorders. One hundred completed questionnaires were utilized for constructing and evaluating the classifiers. Average correct decision rates were 73.3% for the Pseudo Bayesian Classifier and 77.3% for the Neural Network classifier. These rates were higher than the rate which an experienced psychiatrist achieved based on the same restricted data as the classifiers utilized. These classifiers may be effectively utilized for assisting psychiatrists in making their final diagnoses.


2015 ◽  
Vol 770 ◽  
pp. 540-546 ◽  
Author(s):  
Yuri Eremenko ◽  
Dmitry Poleshchenko ◽  
Anton Glushchenko

The question about modern intelligent information processing methods usage for a ball mill filling level evaluation is considered. Vibration acceleration signal has been measured on a mill laboratory model for that purpose. It is made with accelerometer attached to a mill pin. The conclusion is made that mill filling level can not be measured with the help of such signal amplitude only. So this signal spectrum processed by a neural network is used. A training set for the neural network is formed with the help of spectral analysis methods. Trained neural network is able to find the correlation between mill pin vibration acceleration signal and mill filling level. Test set is formed from the data which is not included into the training set. This set is used in order to evaluate the network ability to evaluate the mill filling degree. The neural network guarantees no more than 7% error in the evaluation of mill filling level.


2008 ◽  
Vol 19 (02) ◽  
pp. 205-213 ◽  
Author(s):  
AMR RADI

Genetic Algorithm (GA) has been used to find the optimal neural network (NN) solution (i.e., hybrid technique) which represents dispersion formula of optical fiber. An efficient NN has been designed by GA to simulate the dynamics of the optical fiber system which is nonlinear. Without any knowledge about the system, we have used the input and output data to build a prediction model by NN. The neural network has been trained to produce a function that describes nonlinear system which studies the dependence of the refractive index of the fiber core on the wavelength and temperature. The trained NN model shows a good performance in matching the trained distributions. The NN is then used to predict refractive index that is not presented in the training set. The predicted refractive index had been matched to the experimental data effectively.


2020 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Binge Cui ◽  
Jiandi Cui ◽  
Yan Lu ◽  
Nannan Guo ◽  
Maoguo Gong

Hyperspectral image classification methods may not achieve good performance when a limited number of training samples are provided. However, labeling sufficient samples of hyperspectral images to achieve adequate training is quite expensive and difficult. In this paper, we propose a novel sample pseudo-labeling method based on sparse representation (SRSPL) for hyperspectral image classification, in which sparse representation is used to select the purest samples to extend the training set. The proposed method consists of the following three steps. First, intrinsic image decomposition is used to obtain the reflectance components of hyperspectral images. Second, hyperspectral pixels are sparsely represented using an overcomplete dictionary composed of all training samples. Finally, information entropy is defined for the vectorized sparse representation, and then the pixels with low information entropy are selected as pseudo-labeled samples to augment the training set. The quality of the generated pseudo-labeled samples is evaluated based on classification accuracy, i.e., overall accuracy, average accuracy, and Kappa coefficient. Experimental results on four real hyperspectral data sets demonstrate excellent classification performance using the new added pseudo-labeled samples, which indicates that the generated samples are of high confidence.


2019 ◽  
Vol 14 (2) ◽  
pp. 158-164 ◽  
Author(s):  
G. Emayavaramban ◽  
A. Amudha ◽  
T. Rajendran ◽  
M. Sivaramkumar ◽  
K. Balachandar ◽  
...  

Background: Identifying user suitability plays a vital role in various modalities like neuromuscular system research, rehabilitation engineering and movement biomechanics. This paper analysis the user suitability based on neural networks (NN), subjects, age groups and gender for surface electromyogram (sEMG) pattern recognition system to control the myoelectric hand. Six parametric feature extraction algorithms are used to extract the features from sEMG signals such as AR (Autoregressive) Burg, AR Yule Walker, AR Covariance, AR Modified Covariance, Levinson Durbin Recursion and Linear Prediction Coefficient. The sEMG signals are modeled using Cascade Forward Back propagation Neural Network (CFBNN) and Pattern Recognition Neural Network. Methods: sEMG signals generated from forearm muscles of the participants are collected through an sEMG acquisition system. Based on the sEMG signals, the type of movement attempted by the user is identified in the sEMG recognition module using signal processing, feature extraction and machine learning techniques. The information about the identified movement is passed to microcontroller wherein a control is developed to command the prosthetic hand to emulate the identified movement. Results: From the six feature extraction algorithms and two neural network models used in the study, the maximum classification accuracy of 95.13% was obtained using AR Burg with Pattern Recognition Neural Network. This justifies that the Pattern Recognition Neural Network is best suited for this study as the neural network model is specially designed for pattern matching problem. Moreover, it has simple architecture and low computational complexity. AR Burg is found to be the best feature extraction technique in this study due to its high resolution for short data records and its ability to always produce a stable model. In all the neural network models, the maximum classification accuracy is obtained for subject 10 as a result of his better muscle fitness and his maximum involvement in training sessions. Subjects in the age group of 26-30 years are best suited for the study due to their better muscle contractions. Better muscle fatigue resistance has contributed for better performance of female subjects as compared to male subjects. From the single trial analysis, it can be observed that the hand close movement has achieved best recognition rate for all neural network models. Conclusion: In this paper a study was conducted to identify user suitability for designing hand prosthesis. Data were collected from ten subjects for twelve tasks related to finger movements. The suitability of the user was identified using two neural networks with six parametric features. From the result, it was concluded thatfit women doing regular physical exercises aged between 26-30 years are best suitable for developing HMI for designing a prosthetic hand. Pattern Recognition Neural Network with AR Burg extraction features using extension movements will be a better way to design the HMI. However, Signal acquisition based on wireless method is worth considering for the future.


2013 ◽  
Vol 641-642 ◽  
pp. 460-463
Author(s):  
Yong Gang Liu ◽  
Xin Tian ◽  
Yue Qiang Jiang ◽  
Gong Bing Li ◽  
Yi Zhou Li

In this study, a three-layer artificial neural network(ANN) model was constructed to predict the detonation pressure of aluminized explosive. Elemental composition and loading density were employed as input descriptors and detonation pressure was used as output. The dataset of 41 aluminized explosives was randomly divided into a training set (30) and a prediction set (11). After optimized by adjusting various parameters, the optimal condition of the neural network was obtained. Simulated with the final optimum neural network [6–9–1], calculated detonation pressures show good agreement with experimental results. It is shown here that ANN is able to produce accurate predictions of the detonation pressure of aluminized explosive.


Author(s):  
Fei Long ◽  
Fen Liu ◽  
Xiangli Peng ◽  
Zheng Yu ◽  
Huan Xu ◽  
...  

In order to improve the electrical quality disturbance recognition ability of the neural network, this paper studies a depth learning-based power quality disturbance recognition and classification method: constructing a power quality perturbation model, generating training set; construct depth neural network; profit training set to depth neural network training; verify the performance of the depth neural network; the results show that the training set is randomly added 20DB-50DB noise, even in the most serious 20dB noise conditions, it can reach more than 99% identification, this is a tradition. The method is impossible to implement. Conclusion: the deepest learning-based power quality disturbance identification and classification method overcomes the disadvantage of the selection steps of artificial characteristics, poor robustness, which is beneficial to more accurately and quickly discover the category of power quality issues.


Sign in / Sign up

Export Citation Format

Share Document