scholarly journals Synthesis of program angular motions of the Earth remote sensing spacecraft with high spatial resolution

Author(s):  
S. Yu. Gorchakov

The article considers a spacecraft for remote sensing of the Earth with high-resolution or ultra-high-resolution optical-electronic equipment. During the shooting process, the recorded image constantly moves through the photodetector matrix at a non-constant and/or excessive velocity, which is not suitable for this photodetector. The purpose of the article is to synthesize a method for the control of the orientation and stabilization of the remote sensing spacecraft, which will provide a strictly specified velocity of the image motion on the photodetector. It is proposed to find such a law of motion (functional dependences of the angular rate of the remote sensing spacecraft on time), which will allow, when applied in the control loop, to compensate for the image motion velocities that are unsuitable for this photodetector. The method used consists in time differentiation of the fundamental equation of space photogrammetry in the guiding cosines, as well as in differentiation of the matrix of guiding cosines. This provides a transition between the guiding cosines in the space of images and the space of objects. The result obtained in the article is the derived equation of space photogrammetry in kinematic form, as well as the functional dependences of angular rate on time. In the present article, a mathematical model of scanning images of the Earth’s landscapes with the help of remote sensing spacecraft is compiled. The obtained functional dependences can be applied in the development of on-board algorithms for controlling the orientation and stabilization of the remote sensing spacecraft. When implementing orientation and stabilization control in the on-board computer based on the obtained functional dependencies, a strictly specified speed of image movement in the focal plane of the on-board shooting equipment can be provided, and, consequently, the quality of the scanned image is improved by improving the function of transmitting the modulation of the kinematic “smudge” (blurring) of the image.

2020 ◽  
Author(s):  
Wei Yan ◽  
Jianjun Liu ◽  
Xiaoxia Zhang ◽  
Dawei Liu ◽  
Donghao Liu

<p>Mars is a planet in the solar system that is closer to the Earth and has the most similar natural environment to the Earth. It has always been the first choice for humans to go out of the Earth and Moon system for deep space exploration.</p><p>China’s First Mars Mission (HX-1) will be launched in 2020 with an orbiter and a lander rover. One of the scientific goals of our mission is to study the morphology and geologic structure of the Mars. In order to achieve this purpose, the orbiter is equipped with a High Resolution Imaging Camera (HiRIC) to obtain the high-resolution morphology data of typical regions and to study the formation and evolution of geologic structure. HiRIC consists of three TDI CCD line-scan detectors and two COMS area-array detectors. Each TDI CCD detector covers 5 spectral bands. Its main working mode is the panchromatic TDI CCD push-scan imaging with a maximum spatial resolution of 0.5m.</p><p>Ground scientific verification test is an effective way to comprehensively evaluate the performance, data quality of HiRIC, and to fully verify its on-orbit detection process and data processing methods. In this study, contents and results of ground scientific verification test for HiRIC is introduced. The engineering model is used here for image motion compensation effect evaluation test, focusing effect evaluation test, and outdoor field imaging test. The results show that, 1) HiRIC can calculate the image motion compensation parameters and control the camera imaging correctly according to the platform parameters of orbiter; 2) Focus processing is effective, and HiRIC can adapt to the high-resolution imaging needs of different orbit altitudes; 3) Clear image data can be obtained according to the on-orbit detection process in the outdoor field imaging test, and image data processing was correct. Image data quality, compression quality, and TDI CCD stitching accuracy all meet the requirements of the verification test. This test fully evaluated HiRIC's ability to obtain high-resolution image data of the surface of Mars.</p>


1993 ◽  
Author(s):  
A. Dobrozrakov ◽  
A. Germanov ◽  
Stanislav M. Kulikov ◽  
Anatoly V. Rodin ◽  
V. Seryogin ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 2038 ◽  
Author(s):  
Gianpaolo Balsamo ◽  
Anna Agusti-Panareda ◽  
Clement Albergel ◽  
Gabriele Arduini ◽  
Anton Beljaars ◽  
...  

In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort.


2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

2004 ◽  
Vol 10 (5-6) ◽  
pp. 194-196
Author(s):  
V.I. Voloshin ◽  
◽  
A.S. Levenko ◽  
N.N. Peremetchik ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document