scholarly journals Neisseria lactamica

2020 ◽  
Author(s):  
Keyword(s):  
Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 931
Author(s):  
Mayra M. Ferrari Ferrari Barbosa ◽  
Alex Issamu Kanno ◽  
Leonardo Paiva Farias ◽  
Mariusz Madej ◽  
Gergö Sipos ◽  
...  

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.


Vaccine ◽  
2006 ◽  
Vol 24 (2) ◽  
pp. 206-214 ◽  
Author(s):  
Gretel Sardiñas ◽  
Karen Reddin ◽  
Rolando Pajon ◽  
Andrew Gorringe

Microbiology ◽  
2004 ◽  
Vol 150 (9) ◽  
pp. 2993-3000 ◽  
Author(s):  
Sunita Sinha ◽  
Paul R. Langford ◽  
J. Simon Kroll

The genome of Neisseria meningitidis serogroup B strain MC58 contains three genes – nmb0278, nmb0294 and nmb0407 – encoding putative homologues of DsbA, a periplasmic thiol disulphide oxidoreductase protein-folding catalyst of the Dsb protein family. DsbA assists the folding of periplasmic and membrane proteins in diverse organisms. While all three cloned genes complemented the DTT sensitivity of dsbA-null Escherichia coli, they showed different activities in folding specific target proteins in this background. NMB0278 protein was the most active in complementing defects in motility and alkaline phosphatase activity, while NMB0294 was the most active in folding periplasmic MalF. NMB0407 showed the weakest activity in all assays. It is extremely unusual for organisms to contain more than one chromosomal dsbA. Among the members of the genus Neisseria, only the meningococcus carries all three of these genes. Strains of Neisseria gonorrhoeae, Neisseria lactamica, Neisseria cinerea and Neisseria polysaccharea contained only homologues of nmb0278 and nmb0407, while Neisseria flava, Neisseria subflava and Neisseria flavescens carried only nmb0294. It is speculated that the versatility of the meningococcus in surviving in different colonizing and invasive disease settings may be derived in part from an enhanced potential to deploy outer-membrane proteins, a consequence of carrying an extended repertoire of protein-folding catalysts.


1979 ◽  
Vol 9 (5) ◽  
pp. 598-600
Author(s):  
P C Appelbaum ◽  
R B Lawrence

A radiometric procedure was compared with the Minitek and Cystine Trypticase Agar sugar degradation methods for identification of 113 Neisseria species (58 Neisseria meningitidis, 51 Neisseria gonorrhoeae, 2 Neisseria lactamica, 2 Neisseria sicca). Identification of meningococci and gonococci was confirmed by agglutination and fluorescent antibody techniques, respectively. The Minitek method identified 97% of meningococci, 92% of gonococci, and 100% of other Neisseria after 4 h of incubation. The radiometric (Bactec) procedure identified 100% of gonococci and 100% of miscellaneous Neisseria after 3 h, but problems were encountered with meningococci: 45% of the later strains yielded index values for fructose between 20 and 28 (recommended negative cut-off point, less than 20), with strongly positive (greater than 100) glucose and maltose and negative o-nitrophenyl-beta-D-galactopyranoside reactions in all 58 strains. The Cystine Trypticase Agar method identified 91% of meningococci, 90% of gonococci, and 100% of other Neisseria after 24 to 48 h. Prolongation of the Cystine Trypticase Agar incubation period led to abnormal lactose/sucrose reactions in some meningococci and gonococci. Radiometric and Minitek systems are more accurate and convenient than Cystine Trypticase Agar techniques, but, on the basis of these results, radiometric fructose sensitivity levels for meningococci need reevaluation.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Anish K. Pandey ◽  
David W. Cleary ◽  
Jay R. Laver ◽  
Martin C. J. Maiden ◽  
Xavier Didelot ◽  
...  

1991 ◽  
Vol 106 (3) ◽  
pp. 445-457 ◽  
Author(s):  
S. F. Olsen ◽  
B. Djurhuus ◽  
K. Rasmussen ◽  
H. D. Joensen ◽  
S. O. Larsen ◽  
...  

SUMMARYIn a household survey in the Faroe Islands, an isolated community with hyperendemic occurrence of meningococcal disease due to serogroup B 15, 1604 persons were examined for pharyngeal carriage of Neisseria meningitidis and N. lactamica. Two areas were chosen having experienced high (HIA), and two having experienced low incidences (LIA) of disease. Living in HIA compared with LIA was associated with higher risk of N. meningitidis B 15 carriage and lower risk of N. lactamica carriage, with odds ratios of 2·7 (95% confidence interval (CI) 1·4–5·1, P = 0·003) and 0·41 (95% CI 0·31–0·53, P < 0·0001), respectively. In HIA the risk of N. meningitidis carriage was much lower in non-carriers than carriers of N. lactamica, with an odds ratio of 0·19 (95% CI 0·08–0·47, P = 0·0003); in LIA this association (odds ratio 0·51, P = 0·05) was much weaker. Children 0–14 years had substantially higher risk of being carriers of N. meningitidis group B 15 if the mothers were so, with an odds ratio of 11 (95% CI 4–29, P < 0·0001).


2006 ◽  
Vol 74 (11) ◽  
pp. 6348-6355 ◽  
Author(s):  
Yanwen Li ◽  
Qian Zhang ◽  
Megan Winterbotham ◽  
Eva Mowe ◽  
Andrew Gorringe ◽  
...  

ABSTRACT Natural immunity against Neisseria meningitidis is thought to develop following nasopharyngeal colonization with this bacterium or other microbes expressing cross-reactive antigens. Neisseria lactamica is a commensal of the upper respiratory tract which is often carried by infants and young children; epidemiological evidence indicates that colonization with this bacterium can elicit serum bactericidal activity (SBA) against Neisseria meningitidis, the most validated correlate of protective immunity. Here we demonstrate experimentally that immunization of mice with live N. lactamica protects animals against lethal meningococcal challenge and that some, but not all, strains of N. lactamica elicit detectable SBA in immunized animals regardless of the serogroup of N. meningitidis. While it is unlikely that immunization with live N. lactamica will be implemented as a vaccine against meningococcal disease, understanding the basis for the induction of cross-protective immunity and SBA should be valuable in the design of subunit vaccines for the prevention of this important human infection.


Sign in / Sign up

Export Citation Format

Share Document