scholarly journals Endoderm Cell

2020 ◽  
Author(s):  
Keyword(s):  
2013 ◽  
Vol 198 (2) ◽  
pp. 111-126 ◽  
Author(s):  
Aleksandar M. Babic ◽  
Sunyoung Jang ◽  
Eugenia Nicolov ◽  
Horatiu Voicu ◽  
Chance J. Luckey

Development ◽  
1978 ◽  
Vol 46 (1) ◽  
pp. 135-146
Author(s):  
M. Dziadek

The visceral endoderm of mouse egg cylinders on the 7th and 8th days of gestation is divided into the visceral embryonic (VE) endoderm cell population which synthesizes alphafetoprotein (AFP), and the visceral extra-embryonic (VEX) endoderm population which does not synthesize AFP. Embryonic (E) and extra-embryonic (EX) ectoderm and visceral endoderm tissues were enzymically separated, reassociated in different combinations, and cultured in vitro for 48 h. The immunoperoxidase reaction on sections of cultured tissues showed that both VE and VEX endoderm cells synthesize high levels of AFP when cultured in isolation or in association with E ectoderm, but do not synthesize AFP when in close association with EX ectoderm. Both 7th and 8th day VEX endoderm cells synthesize detectable levels of AFP 12 h after isolation, and contain high levels by 24 h. It is concluded that both VE and VEX endoderm cells have the ability to synthesize AFP, but modulation of expression occurs through an inhibitory influence of the EX ectoderm.


Development ◽  
2020 ◽  
Vol 147 (15) ◽  
pp. dev186965
Author(s):  
Ulla-Maj Fiuza ◽  
Takefumi Negishi ◽  
Alice Rouan ◽  
Hitoyoshi Yasuo ◽  
Patrick Lemaire

ABSTRACTGastrulation is the first major morphogenetic event during animal embryogenesis. Ascidian gastrulation starts with the invagination of 10 endodermal precursor cells between the 64- and late 112-cell stages. This process occurs in the absence of endodermal cell division and in two steps, driven by myosin-dependent contractions of the acto-myosin network. First, endoderm precursors constrict their apex. Second, they shorten apico-basally, while retaining small apical surfaces, thereby causing invagination. The mechanisms that prevent endoderm cell division, trigger the transition between step 1 and step 2, and drive apico-basal shortening have remained elusive. Here, we demonstrate a conserved role for Nodal and Eph signalling during invagination in two distantly related ascidian species, Phallusia mammillata and Ciona intestinalis. Specifically, we show that the transition to step 2 is triggered by Nodal relayed by Eph signalling. In addition, our results indicate that Eph signalling lengthens the endodermal cell cycle, independently of Nodal. Finally, we find that both Nodal and Eph signals are dispensable for endoderm fate specification. These results illustrate commonalities as well as differences in the action of Nodal during ascidian and vertebrate gastrulation.


2007 ◽  
Vol 43 (2) ◽  
pp. 72-86 ◽  
Author(s):  
Neil C. Talbot ◽  
Le Ann Blomberg ◽  
Ayesha Mahmood ◽  
Thomas J. Caperna ◽  
Wesley M. Garrett

Sign in / Sign up

Export Citation Format

Share Document