Analisis Nilai VCR (Volume,Capacity, Ratio) untuk Bobot Dinamis dalam Analisis Rute Menggunakan Metode Dijkstra (Studi Kasus Jalan Godean KM 4,5)

2018 ◽  
Vol 17 (1) ◽  
Keyword(s):  
Author(s):  
Armando Di Meglio ◽  
Elio Di Giulio ◽  
Raffaele Dragonetti ◽  
Nicola Massarotti

1995 ◽  
Vol 78 (3) ◽  
pp. 1132-1139 ◽  
Author(s):  
M. Orozco-Levi ◽  
J. Gea ◽  
J. Sauleda ◽  
J. M. Corominas ◽  
J. Minguella ◽  
...  

The aim of this study was to evaluate whether respiratory function influences the structure of the latissimus dorsi muscle (LD). Twelve patients (58 +/- 10 yr) undergoing thoracotomy were studied. Lung and respiratory muscle function were evaluated before surgery. Patients showed a forced expired volume in 1 s (FEV1) of 67 +/- 16% of the reference value, an FEV1-forced vital capacity ratio of 69 +/- 9%, a maximal inspiratory pressure of 101 +/- 21% of the reference value, and a tension-time index of the diaphragm (TTdi) of 0.04 +/- 0.02. When patients were exposed to 8% CO2 breathing, TTdi increased to 0.06 +/- 0.03 (P < 0.05). The structural analysis of LD showed that 51 +/- 5% of the fibers were type I. The diameter was 56 +/- 9 microns for type I fibers and 61 +/- 9 microns for type II fibers, whereas the hypertrophy factor was 87 +/- 94 and 172 +/- 208 for type I and II fibers, respectively. Interestingly, the histogram distribution of the LD fibers was unimodal in two of the three individuals with normal lung function and bimodal (additional mode of hypertrophic fibers) in seven of the nine patients with chronic obstructive pulmonary disease. An inverse relationship was found between the %FEV1-forced vital capacity ratio and both the diameter of the fibers (type I: r = -0.773, P < 0.005; type II: r = -0.590, P < 0.05) and the hypertrophy factors (type I: r = -0.647, P < 0.05; type II: r = -0.575, P = 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sujata Gupta ◽  
Anupam Mital

Abstract This study presents the behaviour of model footing resting over unreinforced and reinforced sand bed under different loading conditions carried out experimentally. The parameters investigated in this study includes the number of reinforced layers (N = 0, 1, 2, 3, 4), embedment ratio (Df /B = 0, 0.5, 1.0), eccentric and inclined ratio (e/L, e/B = 0, 0.05, 0.10, 0.15) and (a = 0°, 7°, 14°). The test sand was reinforced with bi-axial geogrid (Bx20/20). The test results show that the ultimate bearing capacities decrease with axial eccentricity and inclination of applied loads. The test results also show that the depth of model footing increase zero to B (B = width of model footing), an increase of ultimate bearing capacity (UBC) approximated at 93%. Similarly, the multi-layered geogrid reinforced sand (N = 0 to 4) increases the UBC by about 75%. The bearing capacity ratio (BCR) of the model footing increases with an increasing load eccentricity to the core boundary of footing; if the load eccentricities increase continuity, the BCR decreases. The tilt of the model footing is increased by increasing the eccentricity and decreases with increasing the number of reinforcing layers.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Romulo Carvalho ◽  
Fernando Moraes

Abstract We investigate three formulations for computing acoustic velocity of natural gas and derive an equation for the heat capacity ratio, which plays a central role in these formulations. The first formulation is a compilation of fundamental equations available in the engineering literature, referred to as the DASH formulation. The second formulation is a development from the first, in which we use the derived equation for the heat capacity ratio (modified DASH). The third formulation is a mainstream method implemented in Geoscience (BW formulation). All three formulations stem from virial Equations of State that take preponderance in the exploration stage, when the detailed fluid composition is unknown and compositional methods are frequently inapplicable. We test the formulations on an extensive experimental data set of acoustic velocity of natural gases and compare the resulting accuracies. Both DASH and modified DASH formulations provide significantly higher accuracy when compared to the BW formulation. Additionally, the modified DASH, as we derive in this work, has the highest accuracy at pressures above 7000 psi, a condition typically encountered in the Brazilian pre-salt reservoirs. In a final step, we investigate how these different formulations and corresponding accuracies in velocity computation may affect seismic modeling, using a single interface model between a dense gas reservoir and a sealing rock. A direct comparison of amplitude versus offset modeling using our modified DASH formulation and the BW formulation shows up to 50% difference in amplitude calculation in a sensitivity exercise, especially at the longer offsets and higher pressures.


Author(s):  
Shahadat Iqbal ◽  
Taraneh Ardalan ◽  
Mohammed Hadi ◽  
Evangelos Kaisar

Transit signal priority (TSP) and freight signal priority (FSP) allow transportation agencies to prioritize signal service allocations considering the priority of vehicles and, potentially, decrease the impact signal control has on them. However, there have been no studies to develop guidelines for implementing signal control considering both TSP and FSP. This paper reports on a study conducted to provide such guidelines that employed a literature review, a simulation study, and a decision tree algorithm based on the simulation results. The guideline developed provides recommendations in accordance with the signal timing slack time, the proportion of major to minor street hourly volume, hourly truck volume per lane for the major street, hourly truck volume per lane for the minor street, the proportion of major to minor street hourly truck volume, the proportion of major to minor street hourly bus volume, the volume-to-capacity ratio for the major street, and the volume-to-capacity ratio for the minor street. The guideline developed was validated by implementing it for a case study facility. The validation result showed that the guideline works correctly for both high and low traffic demand.


Sign in / Sign up

Export Citation Format

Share Document