scholarly journals Nanotechnology in Preclinical and Clinical Drug Development

2018 ◽  
Vol 1 (1) ◽  
pp. 73-93 ◽  
Author(s):  
Cristian Vilos

Nanotechnology is generating a strong impact in preclinical and clinical drug development. The diversity of current nanotechnologies offers a broad platform used to enhance the performance of drug discovery screening, to develop sensitive and specific methods used to unveil the mechanisms behind the actions of drugs, to determine the function and interaction between molecules, and to study the physiological and pathological changes of cellular components. In addition, advancements in nanobiotechnology have led to the design of new nanomaterial-based drug candidates that present a novel approach to medical diagnostics and therapeutics. The biocompatible nanoarchitecture of the marketed nanocarriers used for drug delivery has increased the solubility and effectiveness of classical drugs, and has provided the technology required for the targeted delivery of encapsulated tissue-organ specific therapeutics. Because of its effect on drug development, nanotechnology serves as the foundation for many future medical endeavors. This article provides an overview of the basics of nanobiotechnology, and discusses its applications in drug discovery, design, and delivery systems.

Author(s):  
Philip S. Murphy ◽  
Neel Patel ◽  
Timothy J. McCarthy

Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.


2014 ◽  
Vol 66 (6) ◽  
pp. 956-963 ◽  
Author(s):  
Baldeep Kumar ◽  
Ajay Prakash ◽  
Rakesh Kumar Ruhela ◽  
Bikash Medhi

2016 ◽  
Vol 21 (3) ◽  
pp. 445-453 ◽  
Author(s):  
Jonathan P. Roiser ◽  
Pradeep J. Nathan ◽  
Adrian P. Mander ◽  
Gabriel Adusei ◽  
Kenton H. Zavitz ◽  
...  

CNS Drugs ◽  
2016 ◽  
Vol 30 (11) ◽  
pp. 1011-1017 ◽  
Author(s):  
Ian Wadsworth ◽  
Thomas Jaki ◽  
Graeme J. Sills ◽  
Richard Appleton ◽  
J. Helen Cross ◽  
...  

Author(s):  
Diana L. Shuster ◽  
Gina Pastino ◽  
Dirk Cerneus

: Cannabis has become legal in much of the United States similarly to many other countries, for either recreational or medical use. The use of cannabis products is rapidly increasing while the body of knowledge of its myriad of effects still lags. In vitro and clinical data show that cannabis’ main constituents, delta-9-tetrahydrocannabinol and cannabidiol, can affect the pharmacokinetics (PK), safety and pharmacodynamics (PD) of other drugs. Within the context of clinical drug development, the widespread and frequent use of cannabis products has essentially created another special population; that is, the cannabis user. We propose that all clinical drug development programs include a Phase 1 study to assess the drug-drug interaction potential of cannabis as a precipitant on the PK, safety and if applicable, the PD of all new molecular entities (NMEs) in a combination of healthy adult subjects as well as frequent and infrequent cannabis users. This data should be required to inform drug labeling and aid health care providers in treating any patient, as cannabis has quickly become another common concomitant medication and cannabis users, a new special population.


2021 ◽  
Vol 19 ◽  
Author(s):  
Shaojie Yang ◽  
Guoqi Zhu

: 7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoids, with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in the neuropsychiatric disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), depression and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases and learning and memory function. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document