Development of biotechnology for gluten-free sourdough bakery products with a new microbial composition

2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.

2021 ◽  
Vol 37 (6) ◽  
pp. 58-73
Author(s):  
A.A. Laikova ◽  
I.N. Serezhkin

Koumiss is a traditional fermented beverage based on mare's milk. Various lactic acid bacteria, acetic acid bacteria and yeast take part in this fermentation. Microbial composition plays a key role in shaping of smell and taste of the product. The study of the microbial associations of koumiss and establishment of correlations between the microbiota composition and various product characteristics is a promising area of research. It contributes to the creation of more advanced starter cultures for industrial use. In this review, the main biochemical parameters of various types of koumiss are presented and the composition of the beverage microbiota is considered. Special attention is paid to the symbiotic relationships between microorganisms. The main stages of traditional, industrial and laboratory methods for koumiss production are discussed. koumiss, fermentation, lactic acid bacteria, microbial associations, starter culture


1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


2020 ◽  
Vol 8 (11) ◽  
pp. 1689 ◽  
Author(s):  
Vera Fraberger ◽  
Martin Ladurner ◽  
Alexandra Nemec ◽  
Clemens Grunwald-Gruber ◽  
Lisa M. Call ◽  
...  

Sourdough processing contributes to better digestible wheat-based bakery products, especially due to the proteolytic activity of lactic acid bacteria (LAB). Therefore, sourdough-related LAB were screened for their capacity to degrade immunogenic proteins like gluten and alpha-amylase-trypsin inhibitors (ATIs). Firstly, the growth of 87 isolates was evaluated on a gluten-based medium. Further, the breakdown capacity of selected isolates was determined for gluten with a focus on gliadins by measuring acidification parameters and MALDI-TOF MS protein profiles. ATI degradation after 72 h of incubation within an ATI-based medium was investigated by means of acidification, HPLC, and competitive ELISA. All isolates exhibited the potential to degrade ATIs to a high degree, whereas the gliadin degradation capacity varied more greatly among tested LAB, with Lacticaseibacillus paracasei Lpa4 exhibiting the strongest alterations of the gliadin pattern, followed by Lactiplantibacillus plantarum Lpl5. ATI degradation capacities ranged from 52.3% to 85.0% by HPLC and 22.2% to 70.2% by ELISA, with Lacticaseibacillus paracasei Lpa4 showing superior breakdown properties. Hence, a selection of specific starter cultures can be used in sourdough processing for wheat-based bakery products with reduced gluten and ATI content and, further, better tolerated products for patients suffering from non-celiac wheat sensitivity (NCWS).


2001 ◽  
Vol 64 (1) ◽  
pp. 81-86 ◽  
Author(s):  
A. OUMER ◽  
S. GARDE ◽  
P. GAYA ◽  
M. MEDINA ◽  
M. NUÑEZ

The effects of bacteriocins produced by six strains of lactic acid bacteria on 9 mesophilic and 11 thermophilic commercial starter cultures were investigated in mixed cultures of commercial starters with bacteriocin-producing strains in milk. The bacteriocins produced by the test organisms were nisin A, nisin Z, lacticin 481, enterocin AS-48, a novel enterocin, and a novel plantaricin. Mesophilic commercial starters were in most cases tolerant of bacteriocins, with only two of the starters being partially inhibited, one by four and the other by two bacteriocins. The aminopeptidase activities of mesophilic starters were generally low, and only one of the combinations of mesophilic starter–bacteriocin producer gave double the aminopeptidase activity of the starter culture without the bacteriocin producer. Thermophilic commercial starters were more sensitive to bacteriocins than mesophilic starters, with six thermophilic starters being partially inhibited by at least one of the bacteriocins. Their aminopeptidase activities were generally higher than those of the mesophilic starters. The aminopeptidase activities of seven thermophilic starters were increased in the presence of bacteriocins, by factors of up to 9.0 as compared with the corresponding starter cultures alone. Bacteriocin-producing strains may be used as adjunct cultures to mesophilic starters for the inhibition of pathogens in soft and semihard cheeses, because mesophilic starters are rather tolerant of bacteriocins. Bacteriocin producers may also be used as adjunct cultures to thermophilic starters of high aminopeptidase activity, more sensitive to lysis by bacteriocins than mesophilic starters, for the acceleration of ripening in semihard and hard cheeses.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261677
Author(s):  
Dorota Litwinek ◽  
Jakub Boreczek ◽  
Halina Gambuś ◽  
Krzysztof Buksa ◽  
Wiktor Berski ◽  
...  

Starter cultures composed of lactic acid bacteria (LAB) were developed based on the genotypic and phenotypic characterisation of isolates belonging to dominant groups of bacteria in spontaneous rye wholemeal sourdoughs. Combinations of strains have been evaluated on an industrial scale in the sourdough fermentation process. Wholemeal rye bread was prepared using sourdoughs obtained with 3 new starter cultures, and compared to bread made using the commercial culture (LV2). All newly developed cultures used for the preparation of wholemeal rye bread allowed to obtain better quality products as compared to the LV2 based bread. The best results were obtained when the culture containing Lactiplantibacillus plantarum 2MI8 and exopolysaccharide (EPS)-producing Weissella confusa/cibaria 6PI3 strains was applied. The addition of yeast during sourdough breads production, especially the one prepared from mentioned above starter culture, significantly improved their organoleptic properties, their volume and crumb moisture was increased, and also the crumb acidity and hardness was reduced. Fermentation of rye wholemeal dough, especially without the yeast addition, resulted in a significant reduction in the content of higher inositol phosphates as compared to the applied flour, which is associated with improved bioavailability of minerals. The results of this study prove that the investigated new starter cultures can be successfully applied in wholemeal rye bread production.


2021 ◽  
Vol 11 (17) ◽  
pp. 7864
Author(s):  
Emilia Janiszewska-Turak ◽  
Weronika Kołakowska ◽  
Katarzyna Pobiega ◽  
Anna Gramza-Michałowska

Nowadays, foods with probiotic bacteria are valuable and desired, because of their influence on human gut and health. Currently, in the era of zero waste, the food industry is interested in managing its waste. Therefore, the aim of the study was to determine the influence of drying process on the physicochemical properties of fermented vegetable pomace. The work included examining the influence of the lactic acid bacteria (Levilactobacillus brevis, Lactiplantibacillus plantarum, Limosilactobacillus fermentum and its mixture in the ratio 1:1:1) used for vegetable fermentation (beetroot, red pepper, carrot), obtaining pomace from fermented vegetables, and then selection of drying technique using the following methods: convection drying (CD) or freeze-drying (FD) on the physical and chemical properties of pomace. In the obtained pomace and its dried form, dry substance, water activity, color, and active substances such as betalains and carotenoids by spectrophotometric method and also bacteria concentration were evaluated. After fermentation of pomace from the same vegetable, a similar concentration of lactic acid bacteria was found as well as dry substances, color and colorants. Results of physico-chemical properties were related to the used vegetable type. After drying of pomace, it could be seen a high decrease in bacteria and colorant concentration (betalains, carotenoids) independently from drying and vegetable type as well as used starter cultures. The smallest change was observed for spontaneously fermented vegetables compared to those in which the starter culture was used.


2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Say Sophakphokea ◽  
Rith Sokuncharya ◽  
Norng Chakriya ◽  
Ang Vichheka ◽  
Chheun Malyheng ◽  
...  

Fermentation was used since ancient times as an easy method of food preservation, which also maintains and/or improves the nutritional and sensory properties of food. A research as aimed at identifying strain of lactic acid bacteria (LAB) from fermented caridean-shrimp, which properties suitable for starter cultures in food fermentation. A total of 18 LAB stains were obtained from ten different samples, in each sample consisted of commercial LAB strain that isolated from ten samples of caridean-shrimp. The LAB strains from ten samples were screened for resistance to biological barriers (acid and bile salts), and the three most promising strains were selected. The three bacteria strains were isolated from samples of caridean[1]shrimp and were characterized by the API 50 CHL system of identification. Three lactic acid bacteria species were identified and included Lactobacillus plantarum, and Lactobacillus acidophilus. Strain Y’11b,2, Y’11e,2, Y’85,1, which showed probiotic characteristics reducing cell growth of cancer, could be suitable as a starter culture for food fermentation because of its strong acid production and high acid tolerance. This is the first report to describe bacteria, isolated from caridean[1]shrimp, Lactobacillus Plantarum (Y’11b,2, Y’11e,2) and Lactobacillus acidophilus (Y’85,1) which have the probiotic characteristics and the acid tolerance needed for its use as a starter culture in food fermentation.


2021 ◽  
Vol 33 (2) ◽  
pp. 24-34
Author(s):  
Bojana Milicevic ◽  
Vladimir Tomović ◽  
Bojana Danilović ◽  
Dragiša Savić

Petrovac sausage (Petrovská klobása) is a high-quality fermented dry sausage produced traditionally in the municipality of Ba?ki Petrovac (Vojvodina, Serbia). The product is characterised by specific and recognised texture, aroma and colour, produced without additives or preservatives. Lactic acid bacteria (LAB) microbiota plays an important role in production of the sausage. The aim of the paper is to monitor the changes in LAB during the production of Petrovac sausage. Samples of sausages were prepared without and with the addition of starter culture Staphylococcus xylosus as well as combined starter culture Lactiplantibacillus plantarum and S. xylosus, and produced at two different temperature ranges. A total number of 495 strains were isolated from 33 samples of Petrovac sausage during 120 days of production process. Characterisation of the isolates was performed by phenotypic tests, while molecular identification of the representative strains was done by 16S ribosomal DNA sequencing. The total number of LAB was about 8 log (Colony Forming Unit (CFU))/g in all samples, while the number of staphylococci was about 4 log CFU/g. Molecular identification confirmed that all isolates belonged to the following species: Levilactobacillus brevis, Leuconostoc mesenteroides, Lactiplantibacillus plantarum and Pediococcus pentosaceus. Lactobacilli and Leuconostoc spp. dominate the total LAB strains, while P. pentosaceus was isolated at the lowest frequency.  


Sign in / Sign up

Export Citation Format

Share Document