The Effects of Cultivating Lactic Starter Cultures with Bacteriocin-Producing Lactic Acid Bacteria

2001 ◽  
Vol 64 (1) ◽  
pp. 81-86 ◽  
Author(s):  
A. OUMER ◽  
S. GARDE ◽  
P. GAYA ◽  
M. MEDINA ◽  
M. NUÑEZ

The effects of bacteriocins produced by six strains of lactic acid bacteria on 9 mesophilic and 11 thermophilic commercial starter cultures were investigated in mixed cultures of commercial starters with bacteriocin-producing strains in milk. The bacteriocins produced by the test organisms were nisin A, nisin Z, lacticin 481, enterocin AS-48, a novel enterocin, and a novel plantaricin. Mesophilic commercial starters were in most cases tolerant of bacteriocins, with only two of the starters being partially inhibited, one by four and the other by two bacteriocins. The aminopeptidase activities of mesophilic starters were generally low, and only one of the combinations of mesophilic starter–bacteriocin producer gave double the aminopeptidase activity of the starter culture without the bacteriocin producer. Thermophilic commercial starters were more sensitive to bacteriocins than mesophilic starters, with six thermophilic starters being partially inhibited by at least one of the bacteriocins. Their aminopeptidase activities were generally higher than those of the mesophilic starters. The aminopeptidase activities of seven thermophilic starters were increased in the presence of bacteriocins, by factors of up to 9.0 as compared with the corresponding starter cultures alone. Bacteriocin-producing strains may be used as adjunct cultures to mesophilic starters for the inhibition of pathogens in soft and semihard cheeses, because mesophilic starters are rather tolerant of bacteriocins. Bacteriocin producers may also be used as adjunct cultures to thermophilic starters of high aminopeptidase activity, more sensitive to lysis by bacteriocins than mesophilic starters, for the acceleration of ripening in semihard and hard cheeses.

2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


2004 ◽  
Vol 67 (2) ◽  
pp. 403-406 ◽  
Author(s):  
R. D. RAO ◽  
W. L. WENDORFF ◽  
K. SMITH

Whey is often stored or transported for a period of time prior to processing. During this time period, galactose and lactic acid concentrations may accumulate, reducing the quality of spray-dried whey powders in regard to stickiness and agglomeration. This study surveyed industry samples of Cheddar and mozzarella cheese whey streams to determine how galactose and lactic acid concentrations changed with storage at appropriate (4°C) and abuse (37.8°C) temperatures. Samples stored at 4°C did not exhibit significant increases in levels of lactic acid or galactose. Mozzarella whey accumulated the greatest amount of galactose and lactic acid with storage at 37.8°C. Whey samples derived from cheese made from single strains of starter culture were also evaluated to determine each culture's contribution to galactose and lactic acid production. Starter cultures evaluated included Streptococcus salivarius ssp. thermophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. cremoris, and Lactococcus lactis ssp. lactis. Whey derived from L. helveticus accumulated a significantly greater amount of lactic acid upon storage at 37.8°C as compared with the other cultures. Galactose accumulation was significantly decreased in whey from L. lactis ssp. lactis stored at 37.8°C in comparison with the other cultures. Results from this study indicate that proper storage conditions (4°C) for whey prevent accumulation of galactose and lactic acid while the extent of accumulation during storage at 37.8°C varies depending on the culture(s) used in cheese production.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261677
Author(s):  
Dorota Litwinek ◽  
Jakub Boreczek ◽  
Halina Gambuś ◽  
Krzysztof Buksa ◽  
Wiktor Berski ◽  
...  

Starter cultures composed of lactic acid bacteria (LAB) were developed based on the genotypic and phenotypic characterisation of isolates belonging to dominant groups of bacteria in spontaneous rye wholemeal sourdoughs. Combinations of strains have been evaluated on an industrial scale in the sourdough fermentation process. Wholemeal rye bread was prepared using sourdoughs obtained with 3 new starter cultures, and compared to bread made using the commercial culture (LV2). All newly developed cultures used for the preparation of wholemeal rye bread allowed to obtain better quality products as compared to the LV2 based bread. The best results were obtained when the culture containing Lactiplantibacillus plantarum 2MI8 and exopolysaccharide (EPS)-producing Weissella confusa/cibaria 6PI3 strains was applied. The addition of yeast during sourdough breads production, especially the one prepared from mentioned above starter culture, significantly improved their organoleptic properties, their volume and crumb moisture was increased, and also the crumb acidity and hardness was reduced. Fermentation of rye wholemeal dough, especially without the yeast addition, resulted in a significant reduction in the content of higher inositol phosphates as compared to the applied flour, which is associated with improved bioavailability of minerals. The results of this study prove that the investigated new starter cultures can be successfully applied in wholemeal rye bread production.


2021 ◽  
Vol 11 (17) ◽  
pp. 7864
Author(s):  
Emilia Janiszewska-Turak ◽  
Weronika Kołakowska ◽  
Katarzyna Pobiega ◽  
Anna Gramza-Michałowska

Nowadays, foods with probiotic bacteria are valuable and desired, because of their influence on human gut and health. Currently, in the era of zero waste, the food industry is interested in managing its waste. Therefore, the aim of the study was to determine the influence of drying process on the physicochemical properties of fermented vegetable pomace. The work included examining the influence of the lactic acid bacteria (Levilactobacillus brevis, Lactiplantibacillus plantarum, Limosilactobacillus fermentum and its mixture in the ratio 1:1:1) used for vegetable fermentation (beetroot, red pepper, carrot), obtaining pomace from fermented vegetables, and then selection of drying technique using the following methods: convection drying (CD) or freeze-drying (FD) on the physical and chemical properties of pomace. In the obtained pomace and its dried form, dry substance, water activity, color, and active substances such as betalains and carotenoids by spectrophotometric method and also bacteria concentration were evaluated. After fermentation of pomace from the same vegetable, a similar concentration of lactic acid bacteria was found as well as dry substances, color and colorants. Results of physico-chemical properties were related to the used vegetable type. After drying of pomace, it could be seen a high decrease in bacteria and colorant concentration (betalains, carotenoids) independently from drying and vegetable type as well as used starter cultures. The smallest change was observed for spontaneously fermented vegetables compared to those in which the starter culture was used.


2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Say Sophakphokea ◽  
Rith Sokuncharya ◽  
Norng Chakriya ◽  
Ang Vichheka ◽  
Chheun Malyheng ◽  
...  

Fermentation was used since ancient times as an easy method of food preservation, which also maintains and/or improves the nutritional and sensory properties of food. A research as aimed at identifying strain of lactic acid bacteria (LAB) from fermented caridean-shrimp, which properties suitable for starter cultures in food fermentation. A total of 18 LAB stains were obtained from ten different samples, in each sample consisted of commercial LAB strain that isolated from ten samples of caridean-shrimp. The LAB strains from ten samples were screened for resistance to biological barriers (acid and bile salts), and the three most promising strains were selected. The three bacteria strains were isolated from samples of caridean[1]shrimp and were characterized by the API 50 CHL system of identification. Three lactic acid bacteria species were identified and included Lactobacillus plantarum, and Lactobacillus acidophilus. Strain Y’11b,2, Y’11e,2, Y’85,1, which showed probiotic characteristics reducing cell growth of cancer, could be suitable as a starter culture for food fermentation because of its strong acid production and high acid tolerance. This is the first report to describe bacteria, isolated from caridean[1]shrimp, Lactobacillus Plantarum (Y’11b,2, Y’11e,2) and Lactobacillus acidophilus (Y’85,1) which have the probiotic characteristics and the acid tolerance needed for its use as a starter culture in food fermentation.


2021 ◽  
Vol 33 (2) ◽  
pp. 24-34
Author(s):  
Bojana Milicevic ◽  
Vladimir Tomović ◽  
Bojana Danilović ◽  
Dragiša Savić

Petrovac sausage (Petrovská klobása) is a high-quality fermented dry sausage produced traditionally in the municipality of Ba?ki Petrovac (Vojvodina, Serbia). The product is characterised by specific and recognised texture, aroma and colour, produced without additives or preservatives. Lactic acid bacteria (LAB) microbiota plays an important role in production of the sausage. The aim of the paper is to monitor the changes in LAB during the production of Petrovac sausage. Samples of sausages were prepared without and with the addition of starter culture Staphylococcus xylosus as well as combined starter culture Lactiplantibacillus plantarum and S. xylosus, and produced at two different temperature ranges. A total number of 495 strains were isolated from 33 samples of Petrovac sausage during 120 days of production process. Characterisation of the isolates was performed by phenotypic tests, while molecular identification of the representative strains was done by 16S ribosomal DNA sequencing. The total number of LAB was about 8 log (Colony Forming Unit (CFU))/g in all samples, while the number of staphylococci was about 4 log CFU/g. Molecular identification confirmed that all isolates belonged to the following species: Levilactobacillus brevis, Leuconostoc mesenteroides, Lactiplantibacillus plantarum and Pediococcus pentosaceus. Lactobacilli and Leuconostoc spp. dominate the total LAB strains, while P. pentosaceus was isolated at the lowest frequency.  


Author(s):  
Ayşe Gürsoy ◽  
Nazlı Türkmen

Cheese ripening involves highly complex biochemical events. Coagulant enzymes as well as the utilized starters play an important role in these events. Two types of starters are used: primary and secondary. The main role of the primary culture, which consists of lactic acid bacteria, is to carry out lactic production during fermentation. They contribute to proteolysis and limited flavor formation with the enzymes they possess. Secondary or adjunct cultures are used to develop the texture and to accelerate the ripening. During the selection of this type of culture, enzyme profiles (i.e., proteolytic and lipolytic activities and their autolyse levels) in cheese are the primary factors to be taken into consideration. Apart from these, the other factors are their positive effects on health, availability, and economy. Adjunct cultures include yeast, molds, and bacteria. Some of the heterofermentative lactobacilli species, in particular weakened strains, are used as adjunct cultures in order to accelerate the ripening and shorten the ripening time in fat-reduced and low-fat cheeses. This chapter explores adjunct cultures in cheese technology.


1995 ◽  
Vol 58 (9) ◽  
pp. 998-1006 ◽  
Author(s):  
MARIA L. RODRIGUEZ MEDINA ◽  
MARIA E. TORNADIJO ◽  
JAVIER CARBALLO ◽  
ROBERTO MARTIN SARMIENTO

The levels of several microbial groups (aerobic mesophilic flora, aerobic psychrotrophic flora, lactic acid bacteria, Micrococcaceae, enterococci, Enterobacteriaceae, and molds and yeasts), and some biochemical parameters were investigated during the manufacture and ripening of four batches of León cow cheese produced from raw milk without the addition of starter cultures. The study of the microbial characteristics of this cheese constitutes the first step towards the establishment of a starter culture which would allow the making of a product both more uniform and safer from the point of view of health. The total microbial counts were high throughout the elaboration and ripening. Almost all the microbial groups reached their maximum counts in curd and afterwards dropped throughout the ripening process. The greatest drop was shown by Enterobacteriaceae, which had disappeared after 3 months of ripening. Lactic acid bacteria were the major microbial group, reaching counts similar to the total aerobic mesophilic flora at all sampling points. Lactococcus lactis subsp. lactis dominated in milk (62.5% of the isolates obtained in de Man-Rogosa-Sharpe (MRS) agar at this sampling point), curd (82.5% of the isolates obtained at this sampling point) and one-week-old cheese (85% of isolates obtained at this sampling point), while Lactobacillus casei subsp. casei was the most predominant species in eight-week-old cheese (55% of isolates obtained at this sampling point) and twelve-week-old cheese (47.5% of isolates obtained at this sampling point). According to our data, a starter suitable for the production of León cow cheese would be made up of these two species. Some species of Leuconostoc or enterococci could also be added to this starter with the aim of improving the organoleptic characteristics of the final product or to emphasize the characteristics of this variety.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Fortune Akabanda ◽  
James Owusu-Kwarteng ◽  
Kwaku Tano-Debrah ◽  
Charles Parkouda ◽  
Lene Jespersen

Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified fromNunuproduct were assessedin vitrofor their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties,Lactobacillus fermentum22-16,Lactobacillus plantarum8-2,Lactobacillus helveticus22-7, andLeuconostoc mesenteroides14-11 were used as single and combined starter cultures forNunufermentation. Starter culture fermentedNunusamples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging toLactobacillus helveticus, L. plantarum, L. fermentum, andLeu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL) was observed for 50%Leu. mesenteroides,40%L. fermentum,41%L. helveticus, 27%L. plantarum,and 10%Ent. faeciumspecies. In starter culture fermentedNunusamples, all amino acids determined were detected inNunufermented with single starters ofL. plantarumandL. helveticusand combined starter ofL. fermntumandL. helveticus. Consumer sensory analysis showed varying degrees of acceptability forNunufermented with the different starter cultures.


Sign in / Sign up

Export Citation Format

Share Document