scholarly journals Watching biological nanomotors at work : insights from single-molecule studies

2017 ◽  
Author(s):  
◽  
Nagaraju Chada

Recent decades have seen several complimentary biophysics tools emerge to study single protein macromolecules. Most of these techniques use glass as a specimen support. The atomic force microscope, a vital tool in biophysics suited to study proteins in their near native environments, uses mica as a specimen support, as it is known for its extreme flatness and ease of use. Here we optimized glass as a specimen support for atomic force microscopy. This enables the combination of other single molecule techniques with atomic force microscopy to study the same protein macromolecular system in unison. Using bacteriorhodopsin from Halobacterium salinarum and the Sec-translocase (SecA/SecYEG) from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on common microscope cover glass following a straight-forward cleaning procedure. Repeated association and dissociation of SecA with SecYEG indicated that the proteins remain competent for biological processes on glass supports for long periods of time. This work opens the door for combining high resolution biological AFM with other powerful complementary single molecule techniques that require glass as a specimen support. In the second part of this work we studied SecA-ATP hydrolysis and catalase enzyme dynamics. Both of these protein macromolecules were observed to be highly dynamic during catalytic turnover. Single molecule studies of catalase indicated that the enzyme undergoes significant dynamics including oligomeric state changes when exposed to H2O2. Conformational dynamics of the SecA-ATPase was visualized at the single molecule level and the protein macromolecule was observed to flicker between a compact and expanded state in the presence of ATP, indicating reversible conformational changes. Future studies in the lab will shed more light onto these important biological processes.

2008 ◽  
Vol 104 (11) ◽  
pp. 114504 ◽  
Author(s):  
Shahid Naeem ◽  
Yu Liu ◽  
Heng-Yong Nie ◽  
W. M. Lau ◽  
Jun Yang

2012 ◽  
Vol 9 (2) ◽  
pp. 021001 ◽  
Author(s):  
Daniel J Billingsley ◽  
William A Bonass ◽  
Neal Crampton ◽  
Jennifer Kirkham ◽  
Neil H Thomson

2013 ◽  
pp. 102-112
Author(s):  
Memed Duman ◽  
Andreas Ebner ◽  
Christian Rankl ◽  
Jilin Tang ◽  
Lilia A. Chtcheglova ◽  
...  

2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 687
Author(s):  
Amna Abdalla Mohammed Khalid ◽  
Pietro Parisse ◽  
Barbara Medagli ◽  
Silvia Onesti ◽  
Loredana Casalis

The MCM (minichromosome maintenance) protein complex forms an hexameric ring and has a key role in the replication machinery of Eukaryotes and Archaea, where it functions as the replicative helicase opening up the DNA double helix ahead of the polymerases. Here, we present a study of the interaction between DNA and the archaeal MCM complex from Methanothermobacter thermautotrophicus by means of atomic force microscopy (AFM) single molecule imaging. We first optimized the protocol (surface treatment and buffer conditions) to obtain AFM images of surface-equilibrated DNA molecules before and after the interaction with the protein complex. We discriminated between two modes of interaction, one in which the protein induces a sharp bend in the DNA, and one where there is no bending. We found that the presence of the MCM complex also affects the DNA contour length. A possible interpretation of the observed behavior is that in one case the hexameric ring encircles the dsDNA, while in the other the nucleic acid wraps on the outside of the ring, undergoing a change of direction. We confirmed this topographical assignment by testing two mutants, one affecting the N-terminal β-hairpins projecting towards the central channel, and thus preventing DNA loading, the other lacking an external subdomain and thus preventing wrapping. The statistical analysis of the distribution of the protein complexes between the two modes, together with the dissection of the changes of DNA contour length and binding angle upon interaction, for the wild type and the two mutants, is consistent with the hypothesis. We discuss the results in view of the various modes of nucleic acid interactions that have been proposed for both archaeal and eukaryotic MCM complexes.


Biochemistry ◽  
2007 ◽  
Vol 46 (10) ◽  
pp. 2797-2804 ◽  
Author(s):  
Theeraporn Puntheeranurak ◽  
Barbara Wimmer ◽  
Francisco Castaneda ◽  
Hermann J. Gruber ◽  
Peter Hinterdorfer ◽  
...  

2010 ◽  
Vol 63 (4) ◽  
pp. 624
Author(s):  
Michael J. Serpe ◽  
Jason R. Whitehead ◽  
Stephen L. Craig

Single molecule atomic force microscopy (AFM) studies of oligonucleotide-based supramolecular polymers on surfaces are used to examine the molecular weight distribution of the polymers formed between a functionalized surface and an AFM tip as a function of monomer concentration. For the concentrations examined here, excellent agreement with a multi-stage open association model of polymerization is obtained, without the need to invoke additional contributions from secondary steric interactions at the surface.


Sign in / Sign up

Export Citation Format

Share Document