scholarly journals Analysis of the dynamics of coastal landform change based on the integration of remote sensing and gis techniques: Implications for tidal flooding impact in pekalongan, central java, Indonesia

2019 ◽  
Vol 38 (3) ◽  
pp. 17-29 ◽  
Author(s):  
Fajar Yulianto ◽  
Suwarsono ◽  
Taufik Maulana ◽  
Muhammad Rokhis Khomarudin

Abstract Coastal landforms are located in the interface zone between atmosphere, ocean and land surface systems formed by the geomorphic process of erosion, depositional, and subsidence. Studying the dynamics of coastal landform change is important for tracing the relationship between coastal landform changes and tidal flooding in the coastal areas of Pekalongan, Indonesia. The method of integrating remote sensing data with geographic information system (GIS) techniques has been widely used to monitor and analyze the dynamics of morphology change in coastal landform areas. The purpose of this study is to map the dynamics of landform change in the study area from 1978 to 2017 and to analyze its implications for the impact of tidal flooding. The results of the mapping and change analysis associated with coastal landforms can be classified into four landform types: beach, beach ridge, backswamp and alluvial plain. Changes in coastal morphology and landform topography affected by land subsidence and changes in land use/ land cover have contributed to the occurrence of tidal flooding in the study area. Beach ridges perform an important role as natural levees which hold back and prevent the entry of seawater at high tide in coastal areas. A limitation of this study is that, as it focuses only on the physical aspects of coastal landform characteristics for one of the factors causing tidal flooding.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.



PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0221115 ◽  
Author(s):  
Abdulrahman Mohamed Almadini ◽  
Abdalhaleem Abdalla Hassaballa


2019 ◽  
Vol 9 (20) ◽  
pp. 4466 ◽  
Author(s):  
Min Zhou ◽  
Mengquan Wu ◽  
Guangzong Zhang ◽  
Lianjie Zhao ◽  
Xiaoyun Hou ◽  
...  

Using remote sensing images of different time phases from 1990 to 2018, the surface coverage information of northern Yantai (coastline, 2 km from coastline to land) was extracted by means of average high tide line and visual interpretation. The end point change rate (EPR) and linear regression rate were used to study the coastline change rate, the fractal dimension of the coastline in the study area was analyzed, and the change of the type of coastal surface cover was analyzed by the transition matrix. The results show that: (1) Form 1990 to 2018, a significant trend of a continuous increase in the total length of coastline was observed with an increase of 181.08 km (43.18%). In the study area, the coastline of Laizhou had the greatest change rate with an EPR value of 33.67 m/a, whereas the coastline of Laishan had the smallest change rate with an EPR value of 0.30 m/a. (2) Over the past 30 years, with the rapid economic development of Yantai and the ensuant urbanization, the total surface area of the coastal zone in the study area has increased by 144.94 km2, mainly in the areas covered by structures and forests/grasses, by 112.96 km2 and 96.08 km2, respectively, while the areas of desert/bare land and water have decreased by 92.26 km2 and 12.32 km2, respectively. (3) The changes among different types in the study area were clear, mainly from desert/bare land, cultivated land, and building areas to forests/grasses cover and structures. The change areas were mainly concentrated in Laizhou, Longkou, Zhifu, and Penglai. Frequent human activities are an important factor affecting the continuous expansion of the coastal areas of Jiaodong Peninsula to the sea. Aquaculture, coastal construction, construction of artificial islands, and expansion of port terminals have seriously affected the sustainability of ecological resources in the coastal areas. At the same time, the changes in the ecological environment in the coastal zone will have a greater impact on the health of the coastal zone.



2008 ◽  
Vol 73 (4) ◽  
pp. 453-461
Author(s):  
Pavle Premovic ◽  
Maja Stankovic ◽  
Mirjana Pavlovic ◽  
Milos Djordjevic

Geochemical analyses of Zn, Pb and rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in the kerogen of the black marl at the Cretaceous - Paleogene boundary Fish Clay at H?jerup were performed. Substantial proportions of the Zn, Pb and rare earths were probably contained in terrestrial humic substances (the kerogen precursor) arriving at the marine sedimentary site. This is in accord with a previous hypothesis that kerogen is mainly derived from humic acids of an oxic soil in of the adjacent coastal areas of eastern Denmark. It is also suggested that humics enriched in Zn, Pb and rare earth elements were transported mainly through fluvial transport into the deposition site of the Fish Clay. Local weathering/leaching of the impact-eject fallout on the land surface and local terrestrial rocks by impact-induced? acid surface waters perhaps played an important role in providing Zn, Pb and rare earths to these humic substances. Apparently, chondritic and non-chondritic Zn originated from the impact fallout; Pb and rare earth elements were most likely sourced by exposed rocks in the coastal areas of eastern Denmark.



2017 ◽  
Vol 21 (11) ◽  
pp. 5693-5708 ◽  
Author(s):  
Jordi Etchanchu ◽  
Vincent Rivalland ◽  
Simon Gascoin ◽  
Jérôme Cros ◽  
Tiphaine Tallec ◽  
...  

Abstract. Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively) that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA) land surface model included in the EXternalized SURface (SURFEX) modeling platform. The study focuses on the effect of the leaf area index (LAI) spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m). The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km). An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE). Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE) in the simulated evapotranspiration. This finding is attributable to a better description of LAI evolution processes with Formosat-2 data, which further modify soil water content and drainage of soil reservoirs. Effects on annual drainage patterns remain small but significant, i.e., an increase roughly equivalent to 4 % of annual precipitation levels with simulations using Formosat-2 data in comparison to the reference simulation values. This study illustrates the potential for the Sentinel-2 mission to better represent effects of crop management on water budgeting for large, anthropized river basins.



2014 ◽  
Vol 15 (3) ◽  
pp. 1293-1302 ◽  
Author(s):  
M. Tugrul Yilmaz ◽  
Wade T. Crow

Abstract Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and orthogonality with respect to the truth) are required for TCA estimates to be unbiased. Even though soil moisture studies commonly acknowledge that these assumptions are required for an unbiased TCA, no study has specifically investigated the degree to which errors in existing soil moisture datasets conform to these assumptions. Here these assumptions are evaluated both analytically and numerically over four extensively instrumented watershed sites using soil moisture products derived from active microwave remote sensing, passive microwave remote sensing, and a land surface model. Results demonstrate that nonorthogonal and error cross-covariance terms represent a significant fraction of the total variance of these products. However, the overall impact of error cross correlation on TCA is found to be significantly larger than the impact of nonorthogonal errors. Because of the impact of cross-correlated errors, TCA error estimates generally underestimate the true random error of soil moisture products.



2021 ◽  
Vol 4 (17) ◽  
pp. 83-94
Author(s):  
Ricky Anak Kemarau ◽  
Oliver Valentine Eboy

The years 1997/1998 and 2015/2016 saw the occurrence of El Niño occur among the worst in human history. Until now there is still a lack of research in studying the degree of El Niño's strength impact on climate and weather, especially in the tropic region. The objective of this study is to study the effectiveness of remote sensing technology in identifying the differences between the 1997/1998 and 2015/2016 El Niño events. This study uses six satellite data and temperature data from the Malaysia Meteorology Department (MMD). The first step of remote sensing data will be through pre-processing, converting digital Numbers (DN) to Land Surface Temperature (LST). The results of the study found that there was a change in the pattern of LST columns during the 1997/1998 and 2015/2016 El Niño events. Spatial patterns change based on Oceanic Niño Index (ONI) values. The results of this study are important because of the importance of spatial information to those responsible for preparing measures to overcome and reduce the impact of El Niño on the population. at the developing country level, including Malaysia, there is still a lack of information technology infrastructure in channeling useful information to the community. Through the information, this spatial information provides critical hot spot information that needs more attention.



Sign in / Sign up

Export Citation Format

Share Document