Weed Management in Small Grains Harvested for Grain

EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Jason Ferrell ◽  
Gregory MacDonald ◽  
Pratap Devkota

Successful weed control in small grains involves using good management practices in all phases of production. In Florida, winter weeds compete with small grains for moisture, nutrients, and light, with the greatest amount of competition occurring during the first six to eight weeks after planting. Weeds also cause harvest problems the following spring when the small grain is mature. This 4-page publication discusses crop competition, knowing your weeds, and chemical control. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.

EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Pratap Devkota

Successful weed control in peanuts involves use of good management practices in all phases of peanut production. This 11-page document lists herbicide products registered for use in Florida peanut production, their mode of actions group, application rate per acre and per season, and reentry interval. It also discusses the performance of these herbicides on several weeds under Florida conditions. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Jason A. Ferrell ◽  
Gregory E. MacDonald ◽  
Pratap Devkota

Successful weed control is essential for economical corn production in Florida. Weeds reduce corn yields by competing for moisture, nutrients, and light during the growing season and interfere with harvest. Producing a good corn crop is only half the battle and will not be profitable unless the corn can be harvested. Late-season weeds can result in excessive yield loss, inefficient equipment operation, and provide a source of weed seed for the following season. Weeds can be controlled in corn; however, this involves good management practices in all phases of corn production.https://edis.ifas.ufl.edu/wg007


2020 ◽  
Vol 48 (1) ◽  
pp. 329-341 ◽  
Author(s):  
Panagiotis KANATAS ◽  
Ilias TRAVLOS ◽  
Panayiota PAPASTYLIANOU ◽  
Ioannis GAZOULIS ◽  
Ioanna KAKABOUKI ◽  
...  

In the field of Agricultural University of Athens, the effects of false seedbed technique, stale seedbed, chemical and ecologically based control on weed growth and soybean yield were evaluated (2019). The experimental treatments were: normal seedbed, normal seedbed along with pre-emergence chemical control, false seedbed, stale seedbed with glyphosate and stale seedbed with pelargonic acid. In the plots of normal seedbed along with pre-emergence chemical control, pendimethalin was applied at rate of 1560 g a.i. ha-1. In the plots of stale seedbed with glyphosate, glyphosate was applied at a rate of 2160 g a.e. ha-1 and in the plots of stale seedbed with pelargonic acid, pelargonic acid was applied at a rate of 31020 g a.i. ha-1. The experiment was conducted in a randomized complete block design with three replicates. The results revealed that stale seedbed combined either with glyphosate or pelargonic acid application reduced annual weeds’ density by 94 and 95% as compared to normal seedbed. Stale seedbed along with pelargonic acid reduced the density of perennial weeds by 36, 38 and 41% as compared to the combination of normal seedbed and pre-emergence chemical control, normal seedbed and false seedbed, respectively. The application of glyphosate in stale seedbed plots was also effective against perennial weeds. It was also observed that stale seedbed along with glyphosate increased soybean seed yield by 17, 19 and 35% as compared to the combination of normal seedbed and pendimethalin application, false seedbed and normal seedbed, respectively. Beneficial were also the effects of the combination of stale seedbed and pelargonic acid not only on soybean seed yield but also on soybean protein content. Further research is needed in order to investigate the role of false and stale seedbeds as integrated weed management practices in various crops and under different soil and climatic conditions. Research is also needed to evaluate pelargonic acid for weed control in stale seedbeds since it is an eco-friendly herbicide with no restrictions for organic farming.


Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.


1998 ◽  
Vol 12 (3) ◽  
pp. 522-526 ◽  
Author(s):  
Theodore M. Webster ◽  
John Cardina ◽  
Mark M. Loux

The objectives of this study were to determine how the timing of weed management treatments in winter wheat stubble affects weed control the following season and to determine if spring herbicide rates in corn can be reduced with appropriately timed stubble management practices. Field studies were conducted at two sites in Ohio between 1993 and 1995. Wheat stubble treatments consisted of glyphosate (0.84 kg ae/ha) plus 2,4-D (0.48 kg ae/ha) applied in July, August, or September, or at all three timings, and a nontreated control. In the following season, spring herbicide treatments consisted of a full rate of atrazine (1.7 kg ai/ha) plus alachlor (2.8 kg ai/ha) preemergence, a half rate of these herbicides, or no spring herbicide treatment. Across all locations, a postharvest treatment of glyphosate plus 2,4-D followed by alachlor plus atrazine at half or full rates in the spring controlled all broadleaf weeds, except giant ragweed, at least 88%. Giant foxtail control at three locations was at least 83% when a postharvest glyphosate plus 2,4-D treatment was followed by spring applications of alachlor plus atrazine at half or full rates. Weed control in treatments without alachlor plus atrazine was variable, although broadleaf control from July and August glyphosate plus 2,4-D applications was greater than from September applications. Where alachlor and atrazine were not applied, August was generally the best timing of herbicide applications to wheat stubble for reducing weed populations the following season.


EDIS ◽  
2006 ◽  
Vol 2006 (17) ◽  
Author(s):  
William M. Stall

Revised! HS-191, a 3-page fact sheet by William M. Stall, describes effective weed management practices for eggplant in Florida and provides a table listing herbicides available to growers for chemical weed control. This publication updates the 2003 table to reflect current recommendations. Published by the UF Department of Horticultural Sciences, October 2006. HS191/WG030: Weed Management in Eggplant (ufl.edu)


EDIS ◽  
2006 ◽  
Vol 2006 (17) ◽  
Author(s):  
William M. Stall

Revised! HS-201, a 3-page fact sheet by William M. Stall, describes effective weed management practices for carrots in Florida and provides a table of listing herbicides available to growers for chemical weed control. This publication updates the 2003 table to reflect current recommendations. Published by the UF Department of Horticultural Sciences, October 2006. HS201/WG026: Weed Control in Carrot (ufl.edu)


EDIS ◽  
2006 ◽  
Vol 2006 (27) ◽  
Author(s):  
William M. Stall

Revised! HS-188, a 5-page fact sheet by William M. Stall, describes effective weed management practices for beans and peas in Florida and provides a table listing herbicides available to growers for chemical weed control. This publication updates the 2003 table to reflect current recommendations. Published by the UF Department of Horticultural Sciences, October 2006. HS188/WG025: Weed Management in Bean and Pea (Bush, Pole, Lima Bean, English Pea, and Southern Pea) (ufl.edu)


2006 ◽  
Vol 46 (9) ◽  
pp. 1177 ◽  
Author(s):  
J. A. Werth ◽  
C. Preston ◽  
G. N. Roberts ◽  
I. N. Taylor

Forty growers in 4 major cotton-growing regions in Australia were surveyed in 2003 to investigate how the adoption of glyphosate-tolerant cotton (Roundup Ready) had influenced herbicide use, weed management techniques, and whether changes to the weed spectrum could be identified. The 10 most common weeds reported on cotton fields were the same in glyphosate-tolerant and conventional fields in this survey. Herbicide use patterns were altered by the adoption of glyphosate-tolerant cotton with up to 6 times more glyphosate usage, but 21% fewer growers applying pre-emergence herbicides in glyphosate-tolerant fields. Other weed control practices such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing were only reduced marginally. However, growers indicated that management practices are likely to change over time, especially with the introduction of enhanced glyphosate tolerance technology (Roundup Ready Flex), and anticipate a 32% decrease in the number of growers using alternative weed management practices. To date, management practices other than glyphosate use have not changed markedly in glyphosate-tolerant cotton indicating a conservative approach by growers adopting this technology and reflecting the narrow window of herbicide application. The range of weed control options still being employed in glyphosate-tolerant cotton would not increase the risk of glyphosate resistance development.


Sign in / Sign up

Export Citation Format

Share Document