scholarly journals Weed Management in Corn

EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Jason A. Ferrell ◽  
Gregory E. MacDonald ◽  
Pratap Devkota

Successful weed control is essential for economical corn production in Florida. Weeds reduce corn yields by competing for moisture, nutrients, and light during the growing season and interfere with harvest. Producing a good corn crop is only half the battle and will not be profitable unless the corn can be harvested. Late-season weeds can result in excessive yield loss, inefficient equipment operation, and provide a source of weed seed for the following season. Weeds can be controlled in corn; however, this involves good management practices in all phases of corn production.https://edis.ifas.ufl.edu/wg007

EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Jason Ferrell ◽  
Gregory MacDonald ◽  
Pratap Devkota

Successful weed control in small grains involves using good management practices in all phases of production. In Florida, winter weeds compete with small grains for moisture, nutrients, and light, with the greatest amount of competition occurring during the first six to eight weeks after planting. Weeds also cause harvest problems the following spring when the small grain is mature. This 4-page publication discusses crop competition, knowing your weeds, and chemical control. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Pratap Devkota

Successful weed control in peanuts involves use of good management practices in all phases of peanut production. This 11-page document lists herbicide products registered for use in Florida peanut production, their mode of actions group, application rate per acre and per season, and reentry interval. It also discusses the performance of these herbicides on several weeds under Florida conditions. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


Weed Science ◽  
1990 ◽  
Vol 38 (4-5) ◽  
pp. 436-444 ◽  
Author(s):  
John M. Shribbs ◽  
Donald W. Lybecker ◽  
Edward E. Schweizer

Bioeconomic sugarbeet weed management models for preplant, postemergence, and layby herbicides, and late-season handweeding decisions are presented. The personal computer/spreadsheet models are based on number of weed seed in soil, field survey of weed populations, growth stages of weeds and sugarbeets, expected yield loss from weeds, herbicide weed control, weed control cost, and sugarbeet price. The models incorporate two producer risk levels. Several weed scenarios were used to verify the models for reasonable recommendations.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
J. A. Ferrell ◽  
G. E. MacDonald ◽  
Pratap Devkota

A successful weed control is essential for economical cotton production. Weeds compete with cotton for moisture, nutrients, and light. The greatest competition usually occurs early in the growing season up to 8 weeks after emergence. Late-season weeds, while not as competitive as early-season weeds, may interfere with insecticide applications, may cause harvesting difficulties, and add seed in the soil seedbank.https://edis.ifas.ufl.edu/wg003


Author(s):  
Sheeja K. Raj ◽  
J. K. Sinchana

Pulses are the important crop after cereals and is the cheapest source of dietary protein. After the Green revolution, the production of pulses in India remain stagnant over the years due to various biotic and abiotic stresses. Among the various biotic stresses, weeds are the major one which causes severe yield loss in pulses. Due to initial slow growth of pulses, weeds emerge first and gain competitive advantage over the crop and exhibit smothering effect on crop. Moreover, major area of pulses (84 per cent) are under rainfed condition and grown in combination with non-legume crop. As a result, pulses are subjected to various types of biotic and abiotic stresses. Weeds besides causing direct loss in yield also hinder farm activities and serve as alternate host to many pests. Weed management in pulses is essential to bring the weeds below the threshold level to maximize the seed yield and quality. The literature regarding the importance of weed management in pulses, weed flora, critical period of crop weed competition and different weed management methods of weed control are collected and presented in this paper.Weeds are the predominant biological constraint in pulse production due to the slow initial growth of the crop. Strategies’ of weed management depends on the weed competition, types of weeds present and weed control method adopted. In general, critical period of weed competition for short duration pulses is up to 30 days and for long duration pulse crops it is up to 60 days. The major three types of weeds viz., grasses, broad leaved weeds and sedges were found in association with pulses. Intensity of weed infestation varies with agroecological conditions and crop management practices followed. A system approach is necessary to maintain the weed population below the economic threshold level thereby reducing the yield loss. Integrated weed management (IWM) which has been proved to be more effective than any single method in alleviating the buildup of weeds in pulse crop.


2012 ◽  
Vol 22 (2) ◽  
pp. 201-206 ◽  
Author(s):  
S. Alan Walters ◽  
Bryan G. Young

A study was conducted in a no-tillage (NT) jack-o-lantern pumpkin (Cucurbita pepo) field following winter wheat (Triticum aestivum) harvest to determine the effects of using registered herbicides at various timings on weed control and pumpkin yield. All application timings used in this study were important to maximize weed control over the pumpkin growing season. For an initial stale seedbed burndown treatment, paraquat provided better broadleaf weed control than glyphosate, which lead to greater pumpkin yields. The use of s-metolachlor + halosulfuron-methyl preemergence (PRE) and clethodim postemergence (POST) gave the best results for the second series of herbicide applications which related to higher pumpkin yields compared with none or only a PRE application. The last application timing (midseason POST-directed paraquat application between rows) also improved weed control and provided higher pumpkin yields compared with no treatment. Growers who use a stale seedbed burndown treatment in NT pumpkin production, before seedling emergence or transplanting, will generally use glyphosate although this study indicated that paraquat may prove to be a better choice depending on the weed species that are present at this application timing. Most weed control in NT pumpkin production is achieved by a PRE application of various tank-mixed herbicides for both grass and broadleaf weed control, with a POST grass herbicide, a POST application of halosulfuron-methyl, or both [for control of nutsedge (Cyperus sp.), specific broadleaf weed species, or both] applied 3 to 4 weeks later, and this study indicated that the use of labeled PRE and POST herbicides are essential to optimize weed control and pumpkin yields in NT. Most pumpkin growers do not use a POST-directed application of a nonselective herbicide (such as paraquat) before vines cover the soil surface although it appears that this application may be warranted to control weeds that have emerged later in the growing season to maximize pumpkin yield, especially if POST midseason over-the-top herbicide applications are not used. This study indicated that in addition to applying the limited PRE and POST herbicides available for weed control in pumpkin, the use of other chemical weed management practices (e.g., stale seedbed herbicide treatments or POST-directed nonselective herbicide applications) can provide valuable weed control in NT production systems and should be considered by growers to maximize pumpkin yield.


1998 ◽  
Vol 12 (3) ◽  
pp. 522-526 ◽  
Author(s):  
Theodore M. Webster ◽  
John Cardina ◽  
Mark M. Loux

The objectives of this study were to determine how the timing of weed management treatments in winter wheat stubble affects weed control the following season and to determine if spring herbicide rates in corn can be reduced with appropriately timed stubble management practices. Field studies were conducted at two sites in Ohio between 1993 and 1995. Wheat stubble treatments consisted of glyphosate (0.84 kg ae/ha) plus 2,4-D (0.48 kg ae/ha) applied in July, August, or September, or at all three timings, and a nontreated control. In the following season, spring herbicide treatments consisted of a full rate of atrazine (1.7 kg ai/ha) plus alachlor (2.8 kg ai/ha) preemergence, a half rate of these herbicides, or no spring herbicide treatment. Across all locations, a postharvest treatment of glyphosate plus 2,4-D followed by alachlor plus atrazine at half or full rates in the spring controlled all broadleaf weeds, except giant ragweed, at least 88%. Giant foxtail control at three locations was at least 83% when a postharvest glyphosate plus 2,4-D treatment was followed by spring applications of alachlor plus atrazine at half or full rates. Weed control in treatments without alachlor plus atrazine was variable, although broadleaf control from July and August glyphosate plus 2,4-D applications was greater than from September applications. Where alachlor and atrazine were not applied, August was generally the best timing of herbicide applications to wheat stubble for reducing weed populations the following season.


2020 ◽  
Vol 10 ◽  
pp. 1-14
Author(s):  
Charles N. Nyamwamu ◽  
Rebecca Karanja ◽  
Peter Mwangi

This study sought to determine the relation between soil weed seed bank and weed management practices and diversity in farms in Kisii Central Sub County, Western Kenya. Eight administrative sub-locations were randomly selected. Ten farms were selected at equal distance along transect laid across each sub-location. Weed soil seed bank was assessed from soil samples collected from each of the farms; a sub-sample was taken from a composite sample of ten soil cores of 5cm diameter and 15cm deep and placed in germination trays in a greenhouse. Weed diversity in soil weed seedbank was calculated using the Shannon index (H’). Twelve weed species from 12 genera of nine families were recorded. Diversity of the weed species in soil weed seed bank was (H'=1.48). Weed management practises significantly affected weed species soil weed seedbank reserves. Use of inefficient and ineffective hand-weeding techniques resulted in high weed species diversity and abundance.


EDIS ◽  
2006 ◽  
Vol 2006 (17) ◽  
Author(s):  
William M. Stall

Revised! HS-191, a 3-page fact sheet by William M. Stall, describes effective weed management practices for eggplant in Florida and provides a table listing herbicides available to growers for chemical weed control. This publication updates the 2003 table to reflect current recommendations. Published by the UF Department of Horticultural Sciences, October 2006. HS191/WG030: Weed Management in Eggplant (ufl.edu)


EDIS ◽  
2006 ◽  
Vol 2006 (17) ◽  
Author(s):  
William M. Stall

Revised! HS-201, a 3-page fact sheet by William M. Stall, describes effective weed management practices for carrots in Florida and provides a table of listing herbicides available to growers for chemical weed control. This publication updates the 2003 table to reflect current recommendations. Published by the UF Department of Horticultural Sciences, October 2006. HS201/WG026: Weed Control in Carrot (ufl.edu)


Sign in / Sign up

Export Citation Format

Share Document