scholarly journals Spring-planted cover crops for weed control in soybean

Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 998A-998
Author(s):  
Jose Linares ◽  
Johannes Scholberg ◽  
Carlene Chase ◽  
Robert McSorley ◽  
James Fergusson

Lack of effective weed control may hamper organic citrus establishment. Cover crop/weed biomass (CCW) indices were used to assess the effectiveness of annual and perennial cover crops (CC) in reducing weed growth. The CCW values for perennial peanut (PP) were 0.06, 0.14, 0.4, and 0.5 during 2002, 2003, 2004, and 2005, respectively (very poor to poor weed control). Initial PP growth was slow and repeated mowing was required, but, over time, PP became more effective in controlling weeds. Weed biomass with sunn hemp was 0.3 Mg/ha in 2002 (CCW = 25, outstanding weed control) compared to 1.4 Mg/ha with use of cowpea (CCW = 1) in 2004. In 2004, the dry weights (Mg/ha) for different summer CC were: hairy indigo = 7.6, pigeon pea = 7.6, sunn hemp = 5.3, cowpea = 5.1, alyce clover = 2.9, velvet bean = 1.3, and lablab bean = 0.8. Corresponding 2005 values were: 9.5, 3.7, 12.6, 1.0, 1.9, and 1.4. Respective CCWI values were: 7, 4, 2, 16, 28, 0.6, and 0.3 (2004) vs. 17, 2, 64, 80, 0.5, 2, and 14. In 2004, winter CC production (Mg/ha) was radish (R) = 3.2, crimson clover (CR) = 1.7, oats (O) + lupine = 1.6, and rye (WR)/vetch (V) mix = 1.1. Results for 2005 were: CR + R + WR = 8.0, WR = 6.0; CR + WR = 5.3, CR = 5.0, CR + O + WR = 5.0, R = 4.3, and O = 3.6 Mg/ha. Corresponding values for CCW-indices were 15, 2, 1, and 3 (2004) and 100, 25, 76, 35, 62, 11, and 16 (2005). Although OMRI-approved herbicides showed up to 84% weed injury for selected species, none of these products provided long-term weed control. Combination of repeated tillage, use of compact/reseeding CC mixes in tree rows, more vigorous annual CC and/or perennial PP in row middle and repeated use of organic herbicides near sprinklers and tree trunks are thus required to ensure effective weed suppression in organic citrus.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 326-334 ◽  
Author(s):  
Kevin S. Charles ◽  
Mathieu Ngouajio ◽  
Darryl D. Warncke ◽  
Kenneth L. Poff ◽  
Mary K. Hausbeck

Field studies were carried out in Laingsburg, MI, from 2002 to 2004 on Houghton muck soil to assess the impacts of cover crops and soil fertility regimes on weed populations and celery yield. The cover crops were oilseed radish, cereal rye, hairy vetch, and a bare ground control. The fertility rates were full (180, 90, and 450 kg ha−1nitrogen [N], phosphorus pentoxide [P2O5], and potassium oxide [K2O], respectively), half (90, 45, and 225 kg ha−1N, P2O5, and K2O, respectively), and low (90 kg ha−1N). Each cover crop treatment was combined with the low or half rate of fertilizer. An additional treatment with bare ground plus the full rate of fertilizer was added as standard practice. Treatments were maintained in the same location for the duration of the study. Major weed species were common chickweed, prostrate pigweed, shepherd's-purse, common purslane, and yellow nutsedge. Each year, oilseed radish consistently produced the greatest biomass and provided over 98% early season weed biomass suppression. Hairy vetch and cereal rye provided about 70% weed suppression in early spring. Soil fertility level affected weed populations during the 2004 growing season. In 2004, weed biomass in treatments without cover crops or with vetch increased when greater amounts of fertilizer were applied. Within individual fertility levels, higher celery yields were recorded in the oilseed radish plots. For example, in the low fertility rate, celery yield was 34.8, 29.2, 23.9, and 24.4 ton ha−1in the oilseed radish, cereal rye, hairy vetch, and control plots, respectively in 2003. Overall, the results of this experiment indicate that when included in a system where hoeing and hand-weeding are the only weed control methods, cover crops can successfully improve weed management and celery yield on muck soils, allowing reduced fertilizer inputs.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Roberto Botelho Ferraz Branco ◽  
Fernando de Carvalho ◽  
João Paulo de Oliveira ◽  
Pedro Luis da Costa Alves

Abstract Cover crop residue left on the soil surface as organic mulch in no-tillage crop production provides several environmental benefits, including weed suppression. Thus, many farmers who use cover crops attempt to reduce the use of agricultural inputs, especially herbicides. Therefore, our objectives were to study the potential of different cover crop species to suppress weeds and produce an in situ organic mulch, and evaluate the effect of the organic mulch with and without spraying glyphosate on weed suppression for vegetable (tomato (Solanum lycopersicum L. and broccoli (Brassica oleracea L. var. botrytis) growth and yield. Five cover crop treatments (sunn hemp (Crotalaria juncea L.), jack bean [Canavalia ensiformis (L.) DC.], pearl millet [Pennisetum glaucum (L.) R. Br.], grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor] and a no-cover crop (control)) were used in the main plots; and spraying or no spraying glyphosate on the flattened cover crop in the sub plots of split-plot experimental design. Organic mulch from pearl millet, sorghum and sunn hemp resulted in lower weed biomass during the early season of both tomato and broccoli than jack bean and no-cover crop (control). Spraying glyphosate after roller crimping reduced weed biomass by 103 g m−2 and 20 g m−2 by 45 and 60 days after transplanting (DAT) of tomato, respectively and resulted in a better tomato yield compared to non spraying. Glyphosate reduced weed biomass by 110 g m−2 in the early season of broccoli (30 DAT), but did not affect yield. Terminating high biomass cover crops with a roller crimper is a promising technique for weed management in vegetable crops, which has the potential to reduce or even eliminate the need for herbicide.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Laura Vincent-Caboud ◽  
Léa Vereecke ◽  
Erin Silva ◽  
Joséphine Peigné

Organic farming relies heavily on tillage for weed management, however, intensive soil disturbance can have detrimental impacts on soil quality. Cover crop-based rotational tillage (CCBRT), a practice that reduces the need for tillage and cultivation through the creation of cover crop mulches, has emerged as an alternative weed management practice in organic cropping systems. In this study, CCBRT systems using cereal rye and triticale grain species are evaluated with organic soybean directly seeded into a rolled cover crop. Cover crop biomass, weed biomass, and soybean yields were evaluated to assess the effects of cereal rye and winter triticale cover crops on weed suppression and yields. From 2016 to 2018, trials were conducted at six locations in Wisconsin, USA, and Southern France. While cover crop biomass did not differ among the cereal grain species tested, the use of cereal rye as the cover crop resulted in higher soybean yields (2.7 t ha−1 vs. 2.2 t ha−1) and greater weed suppression, both at soybean emergence (231 vs. 577 kg ha−1 of weed biomass) and just prior to soybean harvest (1178 vs. 1545 kg ha−1). On four out of six sites, cover crop biomass was lower than the reported optimal (<8000 kg ha−1) needed to suppress weeds throughout soybean season. Environmental conditions, in tandem with agronomic decisions (e.g., seeding dates, cultivar, planters, etc.), influenced the ability of the cover crop to suppress weeds regardless of the species used. In a changing climate, future research should focus on establishing flexible decision support tools based on multi-tactic cover crop management to ensure more consistent results with respect to cover crop growth, weed suppression, and crop yields.


Author(s):  
Muhammad Nafees ◽  
Ishtiaq Ahmad ◽  
Maryam ◽  
Muhammad Ahsan ◽  
Muhammad Rashid Shaheen ◽  
...  

Onion (Allium cepa L.) is one of the most important vegetables in family Alliaceae, which is cultivated worldwide. In onion, weeds are among one of the major concerns which cause its yield reduction. The present study was designed to assess the effectiveness of different methods for weed control in onion. In this study, five treatments were selected including control, black polythene mulch sheet, white polythene mulch sheet, Dual Gold spray @ 9.0 mL L-1 and Preact spray @ 7.5 mL L-1 to control weeds. The weedicides were applied as pre-emergence sprays before transplanting the seedlings. The experiment was laid out in Randomized Complete Block Design with three replications. From the results, it was concluded that there were significant differences among the studied weed control treatments. Among the five treatments, greater plant height (33.0 cm), number of leaves per plant (8), bulb diameter (4.7 cm) and bulb weight (73 g) were observed in the ridges covered with black mulch sheet. However, the minimum weed biomass (fresh and dry) was recorded in black mulch sheet and Preact pre-emergence weedicide spray (140 and 80 g in both). Thus, black polythene sheet as mulching material was found better option for weed management in onion fields.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 596-602 ◽  
Author(s):  
Reid J. Smeda ◽  
Stephen C. Weller

Weed control in tomato production systems is difficult because few are registered. The use of rye for weed control and its influence on transplant tomato yields was investigated during 1986 and 1987 at two locations in IN to determine if cover crops can provide an alternative weed management technique. ‘Wheeler’ rye was sown in the fall of 1985 and 1986, and mowed or desiccated with glyphosate at various times before planting ‘IND 812'tomatoes. At the time of glyphosate application, rye residues reduced the growth of overwintering weeds by 93% or more compared to bare ground (no cover crop) areas. The time of desiccating rye prior to planting tomatoes affected the extent of weed suppression by rye residues. In 1986, rye treated 4 wk before planting (WBP) tomatoes provided up to 89% suppression of weed growth at 2 wk after planting (WAP) tomatoes, but no measurable weed suppression 5 WAP tomatoes. Rye treated 2 WBP tomatoes provided up to 97% weed suppression up to 5 WAP tomatoes. In 1987, weed suppression varied between locations and differed from 1986. At Lafayette, rye treated 2 and 1 WBP tomatoes provided greater than 81% suppression of weed growth up to 8 WAP tomatoes. Rye mowed and the residues placed into a plot at a known density also reduced weed growth (60%) 8 WAP tomatoes. At Vincennes, however, rye treated 2 and 1 WBP in 1987 did not reduce weed growth later than 4 WAP tomatoes compared to the unweeded, bare ground treatment. The mowed rye residues at Vincennes suppressed weed growth (96%) up to 8 WAP tomatoes. Tomato yield was correlated to weed suppression. In 1986, tomato yield in the rye treated 2 WBP tomatoes was comparable to yield in the bare ground, weeded controls. However, tomato yield in rye plots treated 4 WBP tomatoes was similar to yield in the bare ground, unweeded control. In 1987, tomato yields in all rye plots (mowed, treated 2 and 1 WBP tomatoes) were similar to tomato yields in the bare ground, weeded control at Lafayette. At Vincennes, only the mowed rye treatment yielded comparably to the bare ground, weeded control. In general, rye plots that were weeded yielded similar to or up to 28% more than a bare ground, weeded control. Tomato yields were not reduced by rye residues. Tomato yields in rye residues that provided effective suppression of weed growth (greater than 80%) for a minimum of 4 to 5 WAP tomatoes were comparable to bare ground, weeded controls.


2013 ◽  
Vol 27 (3) ◽  
pp. 538-546 ◽  
Author(s):  
Ryan C. Holmes ◽  
Christy L. Sprague

Field studies were conducted in 2010 and 2011 at two locations in Michigan to examine the effect of row width and herbicide combination on weed suppression and yield in the new Type II black bean variety ‘Zorro.' Black bean was planted in 38- and 76-cm rows. Six weed control strategies were examined:S-metolachlor + halosulfuron (PRE),S-metolachlor (PRE) followed by (fb) bentazon + fomesafen (POST), halosulfuron (PRE) fb clethodim (+ fomesafen at one site in one year) (POST), imazamox + bentazon (POST), a weed-free control, and a nontreated control. Weed control and crop injury were evaluated throughout the growing season. In addition, weeds were counted by species in late July, and weed biomass was harvested and weighed at the end of the season. Black bean yield was obtained by direct harvest. Narrow rows reduced weed populations in two of the four site–year combinations (referred to hereafter as site–years), reduced weed biomass in three of the four site–years, and often improved control of upright broadleaf weeds. All herbicide combinations generally reduced weed populations and biomass, but control of specific weeds was variable. Crop injury was generally slight and transient. Yield was greater in narrow rows in two of the four site–years. All herbicide combinations increased yield compared with the nontreated control and resulted in similar yields to one another. Yield and weed suppression was often maximized in narrow rows, while herbicide performance varied by year and weed spectrum.


Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 624-633 ◽  
Author(s):  
Eric A. Nord ◽  
Matthew R. Ryan ◽  
William S. Curran ◽  
David A. Mortensen ◽  
Steven B. Mirsky

Knowledge of weed emergence periodicity can inform the timing and choice of weed management tactics. We tested the effects of weed management system (conventional [CNV] and herbicide-free [HF]), timing of rye sowing (two dates), timing of soybean planting (5 planting dates, 3 in each system), and supplemental control (with and without) on weed suppression and weed community composition in soybean no-till planted into a cereal rye cover crop. Cereal rye was terminated with a roller-crimper and herbicide (CNV) or with a roller-crimper alone (HF), and supplemental weed control was achieved with a postemergence glyphosate application (CNV) or with interrow high-residue cultivation (HF). Supplemental control with glyphosate in CNV was more effective than high-residue cultivation in HF. When soybean was planted on the same date, CNV resulted in less weed biomass and a more even community composition, whereas HF resulted in greater weed biomass, dominated by common ragweed. When we controlled for cereal rye biomass and compared the effects of cereal rye sowing and termination timing within each system, earlier management reduced weed biomass in HF, but tended to increase weed biomass in CNV. Our results suggest the ability to control emerged weeds prior to soybean planting is an important factor that influences the optimal cereal rye cover crop management timing for weed suppression.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 350-359 ◽  
Author(s):  
Gulshan Mahajan ◽  
Vikas Poonia ◽  
Bhagirath S. Chauhan

Field experiments were conducted in Punjab, India, in 2011 and 2012 to study the integrated effect of planting pattern [uniform rows (20-cm spacing) and paired rows (15-, 25-, and 15-cm spacing)], cultivars (PR-115 and IET-21214), and weed control treatments (nontreated control, pendimethalin 750 g ai ha−1, bispyribac-sodium 25 g ai ha−1, and pendimethalin 750 g ha−1 followed by bispyribac-sodium 25 g ha−1) on weed suppression and rice grain yield in dry-seeded rice. In the nontreated control, IET-21214 had higher grain yield than PR-115 in both planting patterns. However, such differences were not observed within the herbicide treatment. IET-21214 in paired rows, even in nontreated control, provided grain yield (4.7 t ha−1) similar to that in uniform rows coupled with the sole application of pendimethalin (4.3 t ha−1) and bispyribac-sodium (5.0 t ha−1). In uniform rows, sequential application of pendimethalin (PRE) and bispyribac-sodium (POST) provided the highest grain yield among all the weed control treatments and this treatment produced grain yield of 5.9 and 6.1 t ha−1 for PR-115 and IET-21214, respectively. Similarly, in paired rows, PR-115 in paired rows treated with sequential application of pendimethalin and bispyribac-sodium had highest grain yield (6.1 t ha−1) among all the weed control treatments. However, IET-21214 with the sole application of bispyribac-sodium produced grain yield similar to the sequential application of pendimethalin and bispyribac-sodium. At 30 days after sowing, PR-115 in paired rows coupled with pendimethalin application accrued weed biomass (10.7 g m−2) similar to the sequential application of pendimethalin and bispyribac-sodium coupled with uniform rows (8.1 g m−2). Similarly, IET-21214 with bispyribac-sodium application provided weed control similar to the sequential application of pendimethalin and bispyribac-sodium. Our study implied that grain yield of some cultivars could be improved by exploring their competitiveness through paired-row planting patterns with less use of herbicides.


Author(s):  
Silvia Fogliatto ◽  
Lorenzo Patrucco ◽  
Fernando De Palo ◽  
Barbara Moretti ◽  
Marco Milan ◽  
...  

A field study was carried out in 2017 and 2018 in two Italian rice farms (at Livorno Ferraris and Rovasenda) to assess the effect of using cover crops as green mulching on weed control and rice yield. In each site, three different rice fields were sown after rice harvest with either Vicia villosa, Lolium multiflorum, or a mixture of both (V. villosa 40% + L. multiflorum 60%); at Rovasenda a small percentage of Brassica napus and Triticale was also present in the mixture. An additional field at both sites without cover crop was considered as a control reference. Rice was broadcasted sown within the cover crop in May. After few days, the cover crop was terminated in half of each field using a roller-crimper, while in the other half it was terminated by shredding. Within 10 days, the fields were flooded for about a week to promote the degradation of the cover crop biomass. Then, the fields were cultivated in flooding conditions without further weed control. Weed density and weed cover were evaluated thrice during the growing season. At harvest, rice yield and harvest index were determined. Mixed nested ANOVAs were performed for each site to assess the effect of cover crop species, termination technique, and the interaction between cover crop and year. L. multiflorum showed a high biomass before termination, while V. villosa had a more variable development. At Rovasenda, V. villosa growth was limited because of the combination of scarce emergence due to sod-seeding and frost damage. In general, green mulching significantly affected weed density. The best weed suppression was observed with L. multiflorum and mix at Rovasenda, with values of weed density <40 plants m-2 recorded in 2018. At both sites, rice yield was variable in the two years. The highest rice yield (>5 t ha-1) was observed in 2018 in the shredded mixture at Rovasenda and in V. villosa at Livorno Ferraris in 2017. Generally, control fields showed lower yields (1-3 t ha-1) at both sites. The termination methods did not significantly affect both weed density and rice yield. The results highlighted that green mulching could reduce weed infestations, even though alone is not able to completely avoid weed development. Some critical issues of the technique were observed, such as the need of a good cover crop establishment, that eventually results in abundant biomass production and significant weed suppression.   Highlights - Green mulching reduces weed pressure but it should be integrated with other weed control techniques. - Hairy vetch showed poor establishment because of the combination of scarce emergence due to sod-seeding and low temperatures. - Italian ryegrass was more tolerant to low temperatures and showed a good cover that contained weed growth. - Cover crop mixture showed variable results with higher suppression probably related to the number of cover crop species present in the mixture. - The termination methods (crimping and shredding) did not affect weed density and rice yield.


Sign in / Sign up

Export Citation Format

Share Document