scholarly journals Sustainable Nutrient Management in Sugarcane Fields

2021 ◽  
Vol 2 (1) ◽  
pp. 36
Author(s):  
Anna Kusumawati ◽  
Syamsu Alam

The state of sugar in Indonesia which is decreasing in terms of production, the imbalance between production and consumption, can occur due to two things, both on-farm and off-farm. Planting in monoculture for a long period of time will cause reduced soil fertility conditions so that sugarcane productivity decreases. Sustainable nutrient management in sugarcane plantations is an effort made to obtain optimal and profitable productivity, while still trying not to damage the environment so that it can be sustainable and its productivity can be maintained in the long term. Several concepts for sustainability have been put forward by many experts, including the use of site-specific fertilizers, maintaining soil fertility by using sugar processing by-products and the use of humic. It is hoped that some of these application methods can maintain sugarcane plantations to be sustainable.

2015 ◽  
Vol 3 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Prakash Ghimire ◽  
Khem Raj Dahal ◽  
Santosh Marahatta ◽  
Krishna Devkota ◽  
Buddhi Raj Ghimire

 On-farm experiment was conducted in eight farmers’ field, of Khasyoli village development committee (952 to 1415 masl), Nepal, from April to September, 2011 to address the major constraint (nutrient management) to maize production through site-specific nutrient management (SSNM) as this approach is popular among scientists. The experiment comprised three nutrient omission plots (0N, 0P, and 0K), an ample NPK plot, and a farmers’ fertilization practice (FFP) plot, arranged in randomized complete block design. Farmers planted open pollinated variety (Manakamana-3) and managed in their way. Field-specific NPK application rates were calculated by considering nutrient demand, indigenous NPK supply and recovery efficiency of fertilizers. Grain yield in FFP (2.32 Mg/ha) and 0N (1.79 Mg/ha) plots differed significantly from each other and rest of the treatments, but was statistically similar among 0P (3.18 Mg/ha), 0K (3.40 Mg/ha) and ample NPK (3.38 Mg/ha) plots. Post-harvest grain and stover analysis revealed that indigenous NPK supply (20-71 kg N, 19-68 kg P2O5 and 51-164 kg K2O/ha) of soil vary among the farmers’ field. Moreover, soil was poor in indigenous N supply (42 kg/ha), but rich in indigenous P2O5 (35 kg/ha) and K2O (90 kg/ha) supply, on an average. As per the principles of SSNM, the initial fertilizer recommendation made can vary from 40-222 kg N, 0- 93 kg P2O5, and 0-50 kg K2O/ha. On an average, farmers may apply no or lower dose of P2O5 (18 kg/ha) and K2O (3 kg/ha) but need to significantly increase dose of N (143 kg/ha) fertilizer for enhancing soil and maize productivity.Int J Appl Sci Biotechnol, Vol 3(2): 227-231 DOI: http://dx.doi.org/10.3126/ijasbt.v3i2.12538   


2020 ◽  
Vol 12 (21) ◽  
pp. 9010
Author(s):  
Kamaluddin T. Aliyu ◽  
Alpha Y. Kamara ◽  
Jibrin M. Jibrin ◽  
Jeroen E. Huising ◽  
Bello M. Shehu ◽  
...  

Site-specific nutrient management can reduce soil degradation and crop production risks related to undesirable timing, amount, and type of fertilizer application. This study was conducted to understand the spatial variability of soil properties and delineate spatially homogenous nutrient management zones (MZs) in the maize belt region of Nigeria. Soil samples (n = 3387) were collected across the area using multistage and random sampling techniques, and samples were analyzed for pH, soil organic carbon (SOC), macronutrients (N, P, K, S, Ca and Mg), micronutrients (S, B, Zn, Mn and Fe) content, and effective cation exchange capacity (ECEC). Spatial distribution and variability of these parameters were assessed using geostatistics and ordinary kriging, while principal component analysis (PCA) and multivariate K-means cluster analysis were used to delineate nutrient management zones. Results show that spatial variation of macronutrients (total N, available P, and K) was largely influenced by intrinsic factors, while that of S, Ca, ECEC, and most micronutrients was influenced by both intrinsic and extrinsic factors with moderate to high spatial variability. Four distinct management zones, namely, MZ1, MZ2, MZ3, and MZ4, were identified and delineated in the area. MZ1 and MZ4 have the highest contents of most soil fertility indicators. MZ4 has a higher content of available P, Zn, and pH than MZ1. MZ2 and MZ3, which constitute the larger part of the area, have smaller contents of the soil fertility indicators. The delineated MZs offer a more feasible option for developing and implementing site-specific nutrient management in the maize belt region of Nigeria.


2018 ◽  
Vol 220 ◽  
pp. 88-96 ◽  
Author(s):  
Niño P.M.C. Banayo ◽  
Stephan M. Haefele ◽  
Nenita V. Desamero ◽  
Yoichiro Kato

2003 ◽  
Vol 48 (1) ◽  
pp. 147-154 ◽  
Author(s):  
C. Lampert

Nutrients are a limited resource and call for management. A sustainable nutrient management strategy reintegrates nutrients in the environment without accumulating harmful substances above an acceptable level. In this study a methodology to assess the environmental compatibility was developed. For this assessment both the (i) enrichment of pollutants in the soils and (ii) the area specific nutrient demand of the crops were taken into account. The method considers, that products applied on soils also contain stable substances, and as a consequence the accumulation of pollutants diminishes. Additionally, it is considered, that increasing substance concentrations in the soil will lead to an increase of substance flows out of the soil by percolation, plant-removal (and erosion). In practice long term management strategies are restricted by the time span considered, the accepted accumulation of substances, the plants real needs and legal constraints. The rating of various goods can be made with the ratio of the added nutrients, considering the pollution criteria, the legal constraints and the plants real needs.


Author(s):  
S. Balaji Nayak ◽  
D. Balaguravaiah ◽  
K. V. Ramana ◽  
T. Giridharakrishna ◽  
P. Munirathnam ◽  
...  

A study was undertaken to delineation of spatial variability of soil fertility status in order to prepare soil available nutrient maps for improved productivity in different crops grown in the study area of Kurnool revenue division in Kurnool district of Andhra Pradesh state using remote sensing and GIS techniques. The Knowledge of spatial-variability is critical for site specific nutrient management in soil fertility to obtain higher yields. Soil sample (350) were collected from surface from 350 selected sites for preparing precise digital maps using point, line and polygon tools of the Geographic Information System (GIS) with ArcGIS software 10.3 was used for database creation and for creating the union of various thematic maps. The spatial variability maps were generated and delineated into different zones for N, P and K. Soil available Nitrogen, Phosphorus and Potassium spatial variability values generated from the thematic maps of Kurnool division were used to establish fertilizer recommendations for cotton in kharif and Chickpea in rabi during  2018-19 seasons. The recommended doses of Nitrogen (RDN) that worked for cotton were 401 to 450, 351 to 400, > 450 and < 350 kg ha-1 for the areas with Nitrogen availability of 140 to 210, 210 to 280, <140 and > 280 kg/ha, respectively. The Phosphorous fertilizer recommendation for soils with available P of < 30 kg/ha and > 30 kg/ha was figured out as > 250 kg ha-1 and < 250 kg ha-1, respectively. For soil available Potassium recorded 230 to 560, < 230 and > 560 kg/ha, the K recommendation was figured out as 301 to 400, > 401 and < 300 kg/ha, respectively. Recommended doses of Nitrogen (RDN) was worked out for chickpea were 51 to 75, > 76 and < 50 kg/ha for the areas with available N ranges of 184 to 280, < 184 and > 280 kg/ha, respectively. The Phosphatic fertilizer recommendation for soils of available P of < 23.5 and 23.5 to 40 kg/ha was figured out as > 200 kg/ha and 171 to 200 kg/ha, respectively. For the soil available potassium recorded 253 to 412, 413 to 570, < 253 and > 570 kg/ha, the K recommendation was figured out as 66 to 100, 31 to 65, > 100 and < 30 kg/ha, respectively.


2014 ◽  
Vol 17 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
M Sh Islam ◽  
MNH Mahmud ◽  
F Rahman ◽  
MA Saleque

Experiments were conducted in farmers’ fields at Bakergonj, Barisal and Kathaltoli, Potuakhali districts to develop site-specific nutrient management package for high yielding aus rice. The participating farmers delineated soil fertility as the most fertile (grade I), medium fertile (grade II) and the least fertile (grade III) soil. Omissions of N, P, and K were compared with added NPK fertilizers in different fertility grades. At Bakergonj, the NPK treat plots yielded 4.29, 4.36 and 2.09 t ha–1 in soil grade I, II and III, respectively. Omission of N, P and K reduced grain yield by 0.76, 0.95 and 0.29 t ha-1 in grade I, 1.53, 0.87 and 1.25 t ha-1 in grade II and 0.64, 0 and 0.28 t ha-1 in grade III, respectively. At Kathaltoli, the grain yield (6.21 t ha–1) in grade I was higher than grade II (5.58 t ha–1) and grade III (5.11 t ha–1). Omission of N, P and K reduced grain yield by 0.93, 0.18 and 0.09 t ha-1 in grade I, 1.30, 0.37 and 0.93 t ha-1 in grade II and 1.86, 1.30 and 1.30 t ha-1 in grade III, respectively. For Bakergonj, the calculated optimum doses of N were 34, 69 and 29 kg ha–1, P were 4.0, 4.0 and 0.0 kg ha-1 and K were 7.0, 31.0 and 7.0 kg ha–1 for fertility grade I, II and III, respectively. For Kathaltoli, the calculated optimum doses of N were 42, 59 and 84 kg ha–1, P were 1.0, 2.0 and 5.0 kg ha-1 and K were 2.0, 23.0 and 33.0 kg ha–1 for fertility grade I, II and III, respectively. The application of predicted fertilizer dose might increase rice yield in all fertility grades of soil in both the locations.DOI: http://dx.doi.org/10.3329/brj.v17i1-2.20838Bangladesh Rice j. 2013, 17(1&2): 1-6


Sign in / Sign up

Export Citation Format

Share Document