scholarly journals Applying higher order stochastic averaging method to the Van der Pol system with timedelay under random excitation

2019 ◽  
Vol 2 (2) ◽  
pp. 102-109
Author(s):  
Hao Ngoc Duong ◽  
Anh Dong Nguyen ◽  
Dung Quang Nguyen

The paper investigated the Van der Pol system with time-delay under random excitation by the higher stochastic averaging method. The original system was expressed in terms without time-delay under the assumption that the state variabled of the system were slowly varying processed. Then the higher stochastic averaging method was applied on the approximation system. By this technique, the analytical expression of the stationary probability density function for the Van der Pol system with time-delay under random excitation was showed in higher order approximation for the first time. Effects of the parameter time-delay on the system’s response were investigated. The analytical results were suited well to numerical ones obtained by Monte-Carlo method. It was also showed that the higher order averaging solution was better than the one obtained by the traditional stochastic averaging method.

2006 ◽  
Vol 28 (3) ◽  
pp. 155-164
Author(s):  
Nguyen Duc Tinh

For many years the higher order stochastic averaging method has been widely used for investigating nonlinear systems subject to white and coloured noises to predict approximately the response of the systems. In the paper the method is further developed for two-degree-of-freedom systems subjected to white noise excitation. Application to Duffing oscillator is considered.


2021 ◽  
pp. 1-33
Author(s):  
Mao Lin Deng ◽  
Genjin Mu ◽  
Weiqiu Zhu

Abstract Many wake-oscillator models applied to study vortex-induced vibration (VIV) are assumed to be excited by ideal wind that is assumed to be uniform flow with constant velocity. While in the field of wind engineering, the real wind generally is described to be composed of mean wind and fluctuating wind. The wake-oscillator excited by fluctuating wind should be treated as a randomly excited and dissipated multi-degree of freedom (DOF) nonlinear system. The involved studies are very difficult and so far there are no exact solutions available. The present paper aims to carry out some study works on the stochastic dynamics of VIV. The stochastic averaging method of quasi integrable Hamiltonian systems under wideband random excitation is applied to study the Hartlen-Currie wake-oscillator model and its modified model excited by fluctuating wind. The probability and statistics of the random response of wake-oscillator in resonant or lock-in case and in non-resonant case are analytically obtained, and the theoretical results are confirmed by using numerical simulation of original system. Finally, it is pointed out that the stochastic averaging method of quasi integrable Hamiltonian systems under wideband random excitation can also be applied to other wake-oscillator models, such as Skop-Griffin model and Krenk-Nielsen model excited by fluctuating wind.


2004 ◽  
Vol 26 (2) ◽  
pp. 103-110
Author(s):  
Nguyen Duc Tinh

Higher order stochastic averaging method is widely used for investigating single-degree-of-freedom nonlinear systems subjected to white and coloured random noises.In this paper the method is further developed for two-degree-of-freedom systems. An application to a system with cubic damping is considered and the second approximation solution to the Fokker-Planck (FP) equation is obtained.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
D. N. Hao ◽  
N. D. Anh

This paper aims to investigate the stationary probability density functions of the Duffing oscillator with time delay subjected to combined harmonic and white noise excitation by the method of stochastic averaging and equivalent linearization. By the transformation based on the fundamental matrix of the degenerate Duffing system, the paper shows that the displacement and the velocity with time delay in the Duffing oscillator can be computed approximately in non-time delay terms. Hence, the stochastic system with time delay is transformed into the corresponding stochastic non-time delay equation in Ito sense. The approximate stationary probability density function of the original system can be found by combining the stochastic averaging method, the equivalent linearization method, and the technique of auxiliary function. The response of Duffing oscillator is investigated. The analytical results are verified by numerical simulation results.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Changzhao Li ◽  
Juan Zhang

Abstract In this paper, we mainly study the stochastic stability and stochastic bifurcation of Brusselator system with multiplicative white noise. Firstly, by a polar coordinate transformation and a stochastic averaging method, the original system is transformed into an Itô averaging diffusion system. Secondly, we apply the largest Lyapunov exponent and the singular boundary theory to analyze the stochastic local and global stability. Thirdly, by means of the properties of invariant measures, the stochastic dynamical bifurcations of stochastic averaging Itô diffusion equation associated with the original system is considered. And we investigate the phenomenological bifurcation by analyzing the associated Fokker–Planck equation. We will show that, from the view point of random dynamical systems, the noise “destroys” the deterministic stability. Finally, an example is given to illustrate the effectiveness of our analyzing procedure.


2018 ◽  
Vol 28 (13) ◽  
pp. 1830043 ◽  
Author(s):  
Meng Su ◽  
Wei Xu ◽  
Guidong Yang

In this paper, the stationary response of a van der Pol vibro-impact system with Coulomb friction excited by Gaussian white noise is studied. The Zhuravlev nonsmooth transformation of the state variables is utilized to transform the original system to a new system without the impact term. Then, the stochastic averaging method is applied to the equivalent system to obtain the stationary probability density functions (pdfs). The accuracy of the analytical results obtained from the proposed procedure is verified by those from the Monte Carlo simulation based on the original system. Effects of different damping coefficients, restitution coefficients, amplitudes of friction and noise intensities on the response are discussed. Additionally, stochastic P-bifurcations are explored.


2016 ◽  
Vol 23 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Yaping Zhao

An improved stochastic averaging method of the energy envelope is proposed, whose application sphere is extensive and whose implementation is convenient. An oscillating system with both nonlinear damping and stiffness is taken into account. Its averaged Fokker-Planck-Kolmogorov (FPK) equation in respect of the transition probability density function of the energy envelope is deduced by virtue of the method mentioned above. Under the initial and boundary conditions, the joint probability density function as to the displacement and velocity of the system is worked out in closed form after solving the averaged FPK equation by right of a technique based on the integral transformation. With the aid of the special functions, the transient solutions of the probabilistic characteristics of the system response are further derived analytically, including the probability density functions and the mean square values. A simple approach to generate the ideal white noise is drastically ameliorated in order to produce the stationary wide-band stochastic external excitation for the Monte Carlo simulating investigation of the nonlinear system. Both the theoretical solution and the numerical solution of the probabilistic properties of the system response are obtained, which are extremely coincident with each other. The numerical simulation and the theoretical computation all show that the time factor has a certain influence on the probability characteristics of the response. For example, the probabilistic distribution of the displacement tends to be scattered and the mean square displacement trends toward its steady-state value as time goes by. Of course the transient process to reach the steady-state value will obviously be shorter if the damping of the system is greater.


2018 ◽  
Vol 28 (10) ◽  
pp. 1850127 ◽  
Author(s):  
Lijuan Ning ◽  
Zhidan Ma

We consider bifurcation regulations under the effects of correlated noise and delay self-control feedback excitation in a birhythmic model. Firstly, the term of delay self-control feedback is transferred into state variables without delay by harmonic approximation. Secondly, FPK equation and stationary probability density function (SPDF) for amplitude can be theoretically mapped with stochastic averaging method. Thirdly, the intriguing effects on bifurcation regulations in a birhythmic model induced by delay and correlated noise are observed, which suggest the violent dependence of bifurcation in this model on delay and correlated noise. Particularly, the inner limit cycle (LC) is always standing due to noise. Lastly, the validity of analytical results was confirmed by Monte Carlo simulation for the dynamics.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250083 ◽  
Author(s):  
F. HU ◽  
W. Q. ZHU ◽  
L. C. CHEN

The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with fractional derivative damping is investigated. First, the averaged Itô stochastic differential equations for n motion integrals are obtained by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, an expression for the average bifurcation parameter of the averaged system is obtained and a criterion for determining the stochastic Hopf bifurcation of the system by using the average bifurcation parameter is proposed. An example is given to illustrate the proposed procedure in detail and the numerical results show the effect of fractional derivative order on the stochastic Hopf bifurcation.


Sign in / Sign up

Export Citation Format

Share Document