scholarly journals Biological activity and hairy roots induction of Hibiscus sabdariffa L.

Author(s):  
Vu Thi Bach Phuong ◽  
Cao Minh Dai ◽  
Pham Thi Anh Hong ◽  
Quach Ngo Diem Phuong

Hibiscus sabdariffa L. has been used traditionally in many countries of the world as food, especially as a flavouring agent in food industry. H. Sabdariffa is used for treating heart, nerve, liver disease, high blood pressure, arteriosclerosis, sore throat, cough, hypoglycaemia, laxative, diuretic, kidney stone, scurvy... The aims of this study are evaluation of bioactivities of H. Sabdariffa and the production of transformed hairy root of H. Sabdariffa for pharmaceutical production. In this study, Yen and Duh method showed the reducing power of ethanol the root extract and leaf extract are higher than that of stem. The root extract showed the α-glucosidase inhibitory activity with IC50 at 0.2 mg/mL is higher than those of stem and leaf. These results shows that root has higher bioactivites than stem and leaf. In this study, hairy roots of H. Sabdariffa were successfully induced via Agrobacterium rhizogenes ATCC 15834 in the plant cells. The frequency of hairy root and number of hairy root induction from the wounded sites of leaves are the highest (100% and 12.89 roots). The stable introduction of rolB and rolC genes of A. rhizogenes ATCC 15834 into H. Sabdariffa plants was confirmed by PCR analysis. Besides, the absence of virG gene confirmed hairy roots as bacteria-free. Subsequently, these results demonstrated that H. Sabdariffa, particularly the roots, has great potential as pharmacological values and hairy root production can be used as pharmaceutical sources.  

2016 ◽  
Vol 19 (4) ◽  
pp. 95-104
Author(s):  
Phuong Thi Bach Vu ◽  
Minh Thi Thanh Hoang ◽  
Hong Thi Anh Pham ◽  
Phuong Ngo Diem Quach

Abutilon indicum L. belonging to Malvaceae is used as traditional medicinal herbs to treat syphilis, hypoglycemia, hepatic disorders, and malaria... Because of the medicinal value of A. indicum, the aims of this study are the evaluation of bioactivities of A. indicum and production of transformed hairy root for pharmaceutical production. In this study, the reducing power of ethanol root extract and stem extract are higher than that of leave. The root extract exhibited potent brine shrimp (Artemia salina) lethality with LC50 37.04 μg/mL. The α-glucosidase and acetylcholinesterase inhibitory activities of the root extract are the highest. These results showed that roots are higher bioactivities than stems and leaves. This study induced successfully hairy roots of A. indicum L. via Agrobacterium rhizogenes ATCC 15834 in the plant cells. The frequency of hairy root and number of hairy root induction from the wounded sites of leaves are the highest (88.66 % and 8.66 roots). The stable introduction of the rolB and rolC genes of A. rhizogenes strain 15834 into A. indicum plants was confirmed by PCR analysis. Besides, the absence of the virD gene confirmed hairy roots as a bacteria-free. Subsequently, these results demonstrated that A. indicum, particularly the roots, have great potential as pharmacological values and hairy root production maybe used for pharmaceutical sources.


2020 ◽  
Vol 2 (6) ◽  
pp. 165-174
Author(s):  
Vu Thi Bach Phuong ◽  
Pham Thi Anh Hong ◽  
Quach Ngo Diem Phuong

One of the most effective methods for type 2 diabetes treatments is inhibition of enzyme α-glucosidase in the intestines to slow down the release of glucose from carbohydrates in the diet, reduce plasma glucose levels and prevent hyperglycemia after meals. Therefore, seeking α-glucosidase inhibitors used in the treatment of diabetes from plant is the attention of many scientists. Based on the potential of the hairy root culture technology in increasing valuable chemical compounds accumulating, this study aimed to induce hairy roots from six plants of the Malvaceae family including Urena lobata, Abutilon indicum, Hibiscus Sabdariffa, Hibiscus rosa-sinensis, Sida acuta, Sida rhombifolia, and screening which materials has the highest in α-glucosidase inhibitory activity. We have successfully induced hairy roots from six plant species by using the Agrobacterium rhizogenes ATCC 15834 strain. The highest rates of hairy root induction were observed in Hibiscus Sabdariffa and Urena lobata. The stable introduction of rolB and rolC genes to plant genomes was confirmed by PCR. Under liquid-shake culture conditions on MS medium, hairy roots of Hibiscus sabdariffa, Urena lobata and Sida acuta showed better development than other species, and therefore, they are selected for the study of α-glucosidase inhibitory activity. This study proved that Urena lobata was stronger in inhibiting α-glucosidase activity than other studied plants, with the IC50 value of 7.65 μg/ml. The results of this study demonstrated Urena lobata hairy root might be considered as a potential supply of medicinal plants for the treatment of type 2 diabetes.  


Genetika ◽  
2015 ◽  
Vol 47 (1) ◽  
pp. 71-84
Author(s):  
Snezana Milosevic ◽  
Milena Lojic ◽  
Dragana Antonic ◽  
Aleksandar Cingel ◽  
Angelina Subotic

Impatiens walleriana L. shoots were inoculated with Agrobacterium rhizogenes A4M70GUS and the effects of genetic transformation on the catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) activities in wounded region of stems and unwounded leaves were evaluated 10, 24, 240 and 720 hours after inoculation. Following Agrobacterum infection activities of plant antioxidative enzymes changed in a time-dependent manner indicating that dynamic processes occurred during plant-Agrobacterium interaction, plant cell transformation and formation of hairy roots. Appearance of hairy roots on wound sites of shoots was observed ten days after inoculation with A. rhizogenes and the root induction frequency was 100%. Among selected hairy root lines significant differences in growth rate and biomass production were observed and an average 3-fold increase in biomass production was observed for the best growing hairy root line compared with the untransformed roots. PCR analysis showed presence of uidA, rolB, rolC and rolD genes in all analyzed I. walleriana L. hairy root lines, while amplification fragment of rolA gene was detected in 83.3% transformed lines. Efficient transformation protocol for I. walleriana L described in this work offer possibilities to generate hairy root cultures for in vitro propagation of plant viruses.


2020 ◽  
Vol 10 (3) ◽  
pp. 464-471
Author(s):  
Elfahmi Elfahmi ◽  
Fany Mutia Cahyani ◽  
Tati Kristianti ◽  
Sony Suhandono

Purpose : The low content of artemisinin related to the biosynthetic pathway is influenced by the role of certain enzymes in the formation of artemisinin. The regulation of genes involved in artemisinin biosynthesis through genetic engineering is a choice to enhance the content. This research aims to transform ads and p19 gene as an antisilencing into Artemisia annua and to see their effects on artemisinin production. Methods: The presence of p19 and ads genes was confirmed through polymerase chain reaction (PCR) products and sequencing analysis. The plasmids, which contain ads and/or p19 genes, were transformed into Agrobacterium tumefaciens, and then inserted into leaves and hairy roots of A. annua by vacuum and syringe infiltration methods. The successful transformation was checked through the GUS histochemical test and the PCR analysis. Artemisinin levels were measured using HPLC. Results: The percentages of the blue area on leaves by using vacuum and syringe infiltration method and on hairy roots were up to 98, 92.55%, and 99.00% respectively. The ads-p19 sample contained a higher level of artemisinin (0.18%) compared to other samples. Transformed hairy root with co-transformation of ads-p19 contained 0.095% artemisinin, where no artemisinin was found in the control hairy root. The transformation of ads and p19 genes into A. annua plant has been successfully done and could enhance the artemisinin content on the transformed leaves with ads-p19 up to 2.57 folds compared to the untransformed leaves, while for p19, cotransformed and ads were up to 2.25, 1.29, and 1.14 folds respectively. Conclusion: Antisilencing p19 gene could enhance the transformation efficiency of ads and artemisinin level in A. annua.


2010 ◽  
Vol 5 (12) ◽  
pp. 1934578X1000501
Author(s):  
Moumita Gangopadhyay ◽  
Saikat Dewanjee ◽  
Somnath Bhattacharyya ◽  
Sabita Bhattacharya

The aim of the present study was to determine the effect of three strains of Agrobacterium rhizogenes (ATCC 15834, A4 and LBA 9402) and the nature of explants (leaf and stem) on hairy root induction, growth and plumbagin production in Plumbago indica. The first appearance of hairy roots, the transformation frequency, dry root biomass and plumbagin accumulation were found to be maximum in hairy roots induced in leaf explants infected with A. rhizogenes ATCC 15834 as compared with the other two bacterial strains. The hairy roots generated from stem explants infected with all three strains were not found to be productive in terms of the selected parameters. Finally, the insertion of the rolB gene of A. rhizogenes ATCC 15834 in hairy roots of P. indica derived from leaf explants was confirmed by PCR analysis.


2016 ◽  
Vol 19 (2) ◽  
pp. 44-52 ◽  
Author(s):  
Nhut Nhu Nguyen ◽  
Le Van Bui

Catharanthus roseus is a well known medicinal plant. It produces several phytocompounds and many of which show anticancerous properties. However the yields of these compounds are very low. Recently, induction of C. roseus hairy roots by Agrobacterium rhizogenes, is interested as a promising tool for the enhanced production of these metabolites. In this research, wounded leaves from four strains of C. roseus were infected with various strains of A. rhizogenes isolated in Vietnam to provide more information about the induction efficiency of hairy roots. In this experiment, after 3 weeks of infection, the presence of rolB gene in hairy roots were analysed by polymerase chain reaction. All of 13 A. rhizogenes strains could induce the formation of hairy root in C. roseus. The A. rhizogenes C18 strain had the highest induction percentage in C. roseus VIN002, VIN005, and VIN072 with 59.4 %, 50.3 %, and 40.0 % respectively. And the same result was ontained at 26.7% by A. Rhizogenes C26 for C. roseus VIN077 rhizogenes strains. This result identified two A. rhizogenes strains C18 and C26 as potential transformation tools for hairy root production from C. roseus.


2021 ◽  
Vol 07 ◽  
Author(s):  
Chang-Qi Hao ◽  
Shuai-Run Wang ◽  
Yi Wang ◽  
Xin-Yi Hou ◽  
Ya-Xuan Jiang ◽  
...  

Background: Hairy root culture has been widely used in the production of metabolites in dicotyledons, and a large number of food crops and medicinal plants in monocotyledons need to be developed, but there are many difficulties in the induction of hairy roots in monocotyledons. The purpose of this paper is to introduce the inducing methods, influencing factors and application of hairy roots in monocotyledons, and to promote the development of hairy root system in monocotyledons. Methods: The mechanism of action of Agrobacterium rhizogenes and the current situation of hairy root induction, induction methods and influencing factors of monocotyledons were summarized so as to provide convenience for efficient acquisition of hairy root of monocotyledons. Results: Monocotyledons are not easy to produce phenols, cells are prone to lignification, adverse differentiation and selective response to Agrobacterium rhizogenes strains. It is proposed that before induction, plant varieties and explants should be selected, and different infection strains should be screened. In the process of hairy root induction, exogenous inducers such as acetosyringone can be added. Although these factors can provide some help for the induction of hairy roots in monocotyledons, we still need to pay attention to the disadvantages of monocotyledons from dicotyledons at the cellular level. Conclusion: A large number of food crops and medicinal plants are monocotyledons. Hairy root culture can be used to help the breeding and production of medicinal substances. Therefore, it is necessary to pay attention to the selection of varieties and explants, the selection of Agrobacterium rhizogenes and the addition of acetosyringone in the process of hairy root induction so as to improve the production efficiency and facilitate the development and utilization of monocotyledons.


2018 ◽  
Vol 21 (3) ◽  
pp. 90-97 ◽  
Author(s):  
Vu Thi Bach Phuong ◽  
Pham Thi Anh Hong ◽  
Quach Ngo Diem Phuong

Introduction: Our previous study showed that Urena lobata L. hairy root is a potential pharmaceutical source for type 2 diabetes treatment. In order to improve the transformation efficacy and the quality of hairy roots, this study examined the effects of several factors including age, parts of plants, infection time and culture medium in inducing hairy roots in Urena lobata L. Methods: In this study, we investigated four factors to improve the hairy root induction in Urena lobata L. These factors include: age of plant (15-day-old in vitro plants, 45-day-old in vitro plants and after two subculture generations plants), different parts of plant (roots, stems, and leaves), infection time (10, 20 and 30 minutes), and culture medium (Murashige and Skoog (MS), Gamborg B5 medium (GB5) and Woody plant medium (WPM)). All experiments were repeated three times, with uninfected leaf explants of 15-day-old in vitro as the negative control. The transformation frequency and the fresh biomass of hairy roots were recorded at four weeks after infection. Results: The results showed that the optimized procedure which used 15-day-old in vitro plants, the leafy part, the infection time of 10 minutes and culture in the WPM medium was better than the original procedure. The optimized procedure achieved a transformation frequency of 100%. In addition, the fresh biomass of hairy roots formed on an explant in the optimized procedure was 3.2 times higher than the ones induced by the original procedure. Conclusion: The results showed that the optimized procedure was more effective than the original procedure in inducing Urena lobata hairy roots.  


2016 ◽  
Vol 107 (1) ◽  
pp. 45 ◽  
Author(s):  
Elnaz NOUROZI ◽  
Bahman HOSSEINI ◽  
Abbas HASSANI

<em>Agrobacterium rhizogenes</em> is known as a natural tool of genetic engineering in many plant species. For the first time, hairy root induction in <em>Agastache foeniculum</em> using <em>A. rhizogenes</em>,<em> </em>rosmarinic acid content<em> </em>and the effect of different culture media and inoculation methods on hairy root growth rate were investigated. Hairy root culture of <em>A. foeniculum</em> was established by inoculation of the 1-month-old leaf explant with A4 strain of <em>A. rhizogenes</em> and the effectiveness of light – dark conditions and two inoculation methods (immersion and injection) were tested. Furthermore, in immersion method, the effects of inoculation time (3, 5 and 7 min) on root induction were investigated. In the second part of the study, the hairy root culture of <em>A. foeniculum</em> was studied using different<em> </em>basal culture media (MS, 1/2 MS and B5). Rosmarinic acid content in hairy roots and non- transformed roots was analyzed using high-performance liquid chromatography (HPLC). There was no significant difference between various inoculation methods in the ability of hairy roots induction. Observations showed that percentage of hairy root induction was higher when the explants were immersed for 5 min in bacterial suspension. Light conditions displayed the highest hairy root induction rates compared with dark condition. Various culture media are different in terms of types and amounts of nutrients and have influence on growth rate. The maximum growth rate (1.61 g fr wt/50 ml) of hairy roots were obtained in 1/2 MS medium. Rosmarinic acid content in transformed roots (213.42 µg/g dry wt) was significantly higher than non-transformed roots (52.28 µg/ g dry wt).


Sign in / Sign up

Export Citation Format

Share Document