scholarly journals Improving hairy root induction of Urena lobata L. by Agrobacterium rhizogenes ATCC 15834 by some factors

2018 ◽  
Vol 21 (3) ◽  
pp. 90-97 ◽  
Author(s):  
Vu Thi Bach Phuong ◽  
Pham Thi Anh Hong ◽  
Quach Ngo Diem Phuong

Introduction: Our previous study showed that Urena lobata L. hairy root is a potential pharmaceutical source for type 2 diabetes treatment. In order to improve the transformation efficacy and the quality of hairy roots, this study examined the effects of several factors including age, parts of plants, infection time and culture medium in inducing hairy roots in Urena lobata L. Methods: In this study, we investigated four factors to improve the hairy root induction in Urena lobata L. These factors include: age of plant (15-day-old in vitro plants, 45-day-old in vitro plants and after two subculture generations plants), different parts of plant (roots, stems, and leaves), infection time (10, 20 and 30 minutes), and culture medium (Murashige and Skoog (MS), Gamborg B5 medium (GB5) and Woody plant medium (WPM)). All experiments were repeated three times, with uninfected leaf explants of 15-day-old in vitro as the negative control. The transformation frequency and the fresh biomass of hairy roots were recorded at four weeks after infection. Results: The results showed that the optimized procedure which used 15-day-old in vitro plants, the leafy part, the infection time of 10 minutes and culture in the WPM medium was better than the original procedure. The optimized procedure achieved a transformation frequency of 100%. In addition, the fresh biomass of hairy roots formed on an explant in the optimized procedure was 3.2 times higher than the ones induced by the original procedure. Conclusion: The results showed that the optimized procedure was more effective than the original procedure in inducing Urena lobata hairy roots.  

2011 ◽  
Vol 46 (9) ◽  
pp. 1070-1075 ◽  
Author(s):  
Ricardo Luís Mayer Weber ◽  
Maria Helena Bodanese‑Zanettini

The objective of this work was to perform the screening of soybean genotypes as to their ability to respond to the induction of hairy roots by Agrobacterium rhizogenes‑mediated transformation. Four Brazilian soybean cultivars (BRSMG 68 Vencedora, BRS 137, Embrapa 48, and MG/BR 46 Conquista) and two North American ones adapted to Brazilian cropping conditions (Bragg and IAS‑5) were screened for their capacity to respond to A. rhizogenes in protocols for in vitro hairy root culture and ex vitro composite plant production. Four‑day‑old seedlings with uniform size were injected with A. rhizogenes harboring the plasmid p35S‑GFP. Seedlings expressing green fluorescent protein (GFP) in at least one hairy root were used to determine the transformation frequency. Using an axenic in vitro protocol, excised cotyledons from four‑day‑old seedlings were infected with A. rhizogenes harboring the pCAMBIA1301 plasmid, containing the gusA reporter gene. The transformation frequency and the number of days for hairy root emergence after bacterial infection (DAI) were evaluated. The transformation frequency and DAI varied according to the genotype. Cultivars MG/BR 46 Conquista and BRSMG 68 Vencedora are more susceptible to A. rhizogenes and can be recommended for transformation experiments.


2018 ◽  
Vol 15 (4) ◽  
pp. 641-650
Author(s):  
Duong Tan Nhut ◽  
Nguyen Phuc Huy ◽  
Trinh Thi Huong ◽  
Vu Quoc Luan ◽  
Vu Thi Hien ◽  
...  

In recent years, the Agrobacterium-mediated genetic transformation system has become the most useful method widely used for the introduction of foreign genes into plant cells followed by regeneration of genetically improved plants. Panax vietnamensis Ha et Grushv. is a highly valued medicinal plant native to Vietnam with limited area of distribution. This report illustrates the possibilities of biotechnology for genetic transformation aimed at establishing an effective production of secondary metabolites in P. vietnamensis. In the present investigation, 0.5 cm2 leaf blades, 1 cm long leaf petioles and 0.5 cm3 callus clusters were used for the hairy root induction. Results indicated that hairy roots were induced on P. vietnamensis callus clusters co-cultivated with Agrobacterium rhizogenes strain ATCC15834 at OD600 of 0.5 with an infection time of 20 min and a supplementation of 100 mM acetosyringone. PCR amplification of the DNA isolated from the resulting hairy roots was used to confirm the presence of rol genes. Compared to in vitro rhizome cultures, hairy root cultures appear to be potential for continuous production of valuable secondary metabolites with similar saponin profiles. The protocol described in this study is simple and rapid and therefore, can be used for large-scale experiments for the rapid production of valuable compounds.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 975
Author(s):  
Ye-Eun Park ◽  
Chang-Ha Park ◽  
Hyeon-Ji Yeo ◽  
Yong-Suk Chung ◽  
Sang-Un Park

Peanut (Arachis hypogaea) is a crop that can produce resveratrol, a compound with various biological properties, such as those that exert antioxidant, anticancer, and anti-inflammatory effects. In this study, trans-resveratrol was detected in the roots, leaves, and stems of tan and purple seed coat peanuts (Arachis hypogaea) cultivated in a growth chamber. Both cultivars showed higher levels of resveratrol in the roots than the other plant parts. Thus, both cultivars were inoculated with Agrobacterium rhizogenes, in vitro, to promote hairy root development, thereby producing enhanced levels of t-resveratrol. After 1 month of culture, hairy roots from the two cultivars showed higher levels of fresh weight than those of seedling roots. Furthermore, both cultivars contained higher t-resveratrol levels than those of their seedling roots (6.88 ± 0.21 mg/g and 28.07 ± 0.46 mg/g, respectively); however, purple seed coat peanut hairy roots contained higher t-resveratrol levels than those of tan seed coat peanut hairy roots, ranging from 70.16 to 166.76 mg/g and from 46.61 to 54.31 mg/g, respectively. The findings of this study indicate that peanut hairy roots could be a good source for t-resveratrol production due to their rapid growth, high biomass, and substantial amount of resveratrol.


Nativa ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Marcos Vinícius Marques Pinheiro ◽  
Ana Cristina Portugal Pinto De Carvalho ◽  
Fabrina Bolzan Martins

No intuito de elevar as taxas de sobrevivência durante a etapa de aclimatização e posterior plantio a campo, avaliou-se o enraizamento in vitro de bananeira cv. Pacovan, em diferentes concentrações de sais MS e de sacarose. Utilizou-se DIC, esquema fatorial (6x2x3), com seis meios de cultura [sendo três concentrações de nutrientes do meio MS (100%; 50% de macronutrientes; e 50% dos sais macro e micronutrientes), e duas concentrações de sacarose (1,5/3,0%)], dois fotoperíodos (12/16 h) e três tempos de cultivo (21, 28 ou 35 dias) e seis repetições/tratamento. Analisaram-se: altura da planta, número de folhas/planta, massas frescas e secas das partes aérea e radicular. Para altura da planta, massa fresca da parte aérea e radicular, o meio MS 50% dos sais + sacarose (1,5%) com fotoperíodo de 16 h e tempo de cultivo de 35 dias foi satisfatório. Para massa seca da parte aérea foi MS 50% de sais + sacarose (3%), e para massa seca da parte radicular, MS 100% + sacarose (3%) (em 12hs/28 dias e 16hs/21 dias). Para o alongamento/enraizamento in vitro da bananeira cv. Pacovan sugere-se MS 50% de sais (macro e micronutrientes), redução ou manutenção de sacarose (1,5 ou 3%) em 16h/35 dias de cultivo.Palavra-chave: Musa spp., propagação in vitro, sistema radicular. CHANGES IN CULTURE MEDIUM, PHOTOPERIOD AND TIME OF CULTIVATION AFFECT THE IN VITRO ELONGATION AND ROOTING OF BANANA CV. PACOVAN ABSTRACT:In order to achieve high rates of survival during the acclimatization and later planting in the field, was evaluated the in vitro of banana cv. Pacovan plants under different concentrations of sucrose and MS basal salt mixture. The experiment was assembled in a DIC, in 6x2x3, six different culture media [three different MS salt mixture concentrations (100%; 50% of macronutrients; and 50% of macro/micronutrients) and two sucrose concentrations (1.5/3%)], two photoperiods (12/16 hours) and three cultivation times (21, 28 or 35 days). Each treatment was composed by 6 replicates. Plant height, number of leaves/plant, fresh and dry weight of roots and shoots, were analyzed. Satisfactory results for plant height and shoot and root fresh biomass were observed in MS with macro/micronutrients (50%) + sucrose (3%), 16 hours/35 days. The highest values of shoot dry weight were observed in MS with macro/micronutrients (50%) + sucrose (3%); the highest root dry weight was achieved with MS 100% + sucrose (3%) (12hs/28 and 16hs/21 days). The suggested medium for the in vitro elongation and rooting stage of banana cv. Pacovan is the MS with 50% of salts (macro and micronutrients), reduction or maintenance of sucrose (1.5 or 3%) in 16h/35 days of cultivation.Keywords: Musa spp., in vitro propagation, root system. DOI:


2021 ◽  
Vol 07 ◽  
Author(s):  
Chang-Qi Hao ◽  
Shuai-Run Wang ◽  
Yi Wang ◽  
Xin-Yi Hou ◽  
Ya-Xuan Jiang ◽  
...  

Background: Hairy root culture has been widely used in the production of metabolites in dicotyledons, and a large number of food crops and medicinal plants in monocotyledons need to be developed, but there are many difficulties in the induction of hairy roots in monocotyledons. The purpose of this paper is to introduce the inducing methods, influencing factors and application of hairy roots in monocotyledons, and to promote the development of hairy root system in monocotyledons. Methods: The mechanism of action of Agrobacterium rhizogenes and the current situation of hairy root induction, induction methods and influencing factors of monocotyledons were summarized so as to provide convenience for efficient acquisition of hairy root of monocotyledons. Results: Monocotyledons are not easy to produce phenols, cells are prone to lignification, adverse differentiation and selective response to Agrobacterium rhizogenes strains. It is proposed that before induction, plant varieties and explants should be selected, and different infection strains should be screened. In the process of hairy root induction, exogenous inducers such as acetosyringone can be added. Although these factors can provide some help for the induction of hairy roots in monocotyledons, we still need to pay attention to the disadvantages of monocotyledons from dicotyledons at the cellular level. Conclusion: A large number of food crops and medicinal plants are monocotyledons. Hairy root culture can be used to help the breeding and production of medicinal substances. Therefore, it is necessary to pay attention to the selection of varieties and explants, the selection of Agrobacterium rhizogenes and the addition of acetosyringone in the process of hairy root induction so as to improve the production efficiency and facilitate the development and utilization of monocotyledons.


2003 ◽  
Vol 81 (7) ◽  
pp. 645-656 ◽  
Author(s):  
Karine Labour ◽  
Mario Jolicoeur ◽  
Marc St-Arnaud

Variability in growth and nutritional dynamics of in vitro tomato hairy root lines and their relationship with responsiveness to mycorrhizal colonization were studied. Four tomato cultivars were transformed with three Agrobacterium rhizogenes strains to obtain several hairy root lines, which were compared for growth and receptivity to Glomus intraradices. Four transformed hairy root lines were further characterized and compared with excised roots of the nontransformed tomato cultivar 'Cobra' and with Ri-T-DNA carrot hairy roots. Lines were compared during 4 months on minimal medium in terms of growth, nutrient uptake, and mycorrhizal colonization. In a subexperiment, the cultures were grown on a modified minimal medium to assess the contribution of initial inorganic phosphate concentration in mycorrhizal susceptibility of the three initially nonreceptive lines. On minimal medium, growth and nutrient uptake rates were highly correlated, but both were unrelated to mycorrhizal receptiveness. All the lines successfully established the symbiosis when the initial phosphate concentration was significantly reduced. No association was found between the origin of lines from the different tomato cultivar – bacterial strain combinations and the absence of symbiosis establishment on minimal medium. Decrease of inorganic phosphate concentration at the beginning of the culture was a key factor involved in precolonization steps of mycorrhizal symbiosis.Key words: Glomus intraradices, hairy roots, Lycopersicon esculentum, mycorrhizal responsiveness, root nutrition, inorganic phosphate.


2014 ◽  
Vol 4 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Vinay Kumar ◽  
Dnyanada Desai ◽  
Varsha Shriram

2020 ◽  
Vol 2 (6) ◽  
pp. 165-174
Author(s):  
Vu Thi Bach Phuong ◽  
Pham Thi Anh Hong ◽  
Quach Ngo Diem Phuong

One of the most effective methods for type 2 diabetes treatments is inhibition of enzyme α-glucosidase in the intestines to slow down the release of glucose from carbohydrates in the diet, reduce plasma glucose levels and prevent hyperglycemia after meals. Therefore, seeking α-glucosidase inhibitors used in the treatment of diabetes from plant is the attention of many scientists. Based on the potential of the hairy root culture technology in increasing valuable chemical compounds accumulating, this study aimed to induce hairy roots from six plants of the Malvaceae family including Urena lobata, Abutilon indicum, Hibiscus Sabdariffa, Hibiscus rosa-sinensis, Sida acuta, Sida rhombifolia, and screening which materials has the highest in α-glucosidase inhibitory activity. We have successfully induced hairy roots from six plant species by using the Agrobacterium rhizogenes ATCC 15834 strain. The highest rates of hairy root induction were observed in Hibiscus Sabdariffa and Urena lobata. The stable introduction of rolB and rolC genes to plant genomes was confirmed by PCR. Under liquid-shake culture conditions on MS medium, hairy roots of Hibiscus sabdariffa, Urena lobata and Sida acuta showed better development than other species, and therefore, they are selected for the study of α-glucosidase inhibitory activity. This study proved that Urena lobata was stronger in inhibiting α-glucosidase activity than other studied plants, with the IC50 value of 7.65 μg/ml. The results of this study demonstrated Urena lobata hairy root might be considered as a potential supply of medicinal plants for the treatment of type 2 diabetes.  


2016 ◽  
Vol 107 (1) ◽  
pp. 45 ◽  
Author(s):  
Elnaz NOUROZI ◽  
Bahman HOSSEINI ◽  
Abbas HASSANI

<em>Agrobacterium rhizogenes</em> is known as a natural tool of genetic engineering in many plant species. For the first time, hairy root induction in <em>Agastache foeniculum</em> using <em>A. rhizogenes</em>,<em> </em>rosmarinic acid content<em> </em>and the effect of different culture media and inoculation methods on hairy root growth rate were investigated. Hairy root culture of <em>A. foeniculum</em> was established by inoculation of the 1-month-old leaf explant with A4 strain of <em>A. rhizogenes</em> and the effectiveness of light – dark conditions and two inoculation methods (immersion and injection) were tested. Furthermore, in immersion method, the effects of inoculation time (3, 5 and 7 min) on root induction were investigated. In the second part of the study, the hairy root culture of <em>A. foeniculum</em> was studied using different<em> </em>basal culture media (MS, 1/2 MS and B5). Rosmarinic acid content in hairy roots and non- transformed roots was analyzed using high-performance liquid chromatography (HPLC). There was no significant difference between various inoculation methods in the ability of hairy roots induction. Observations showed that percentage of hairy root induction was higher when the explants were immersed for 5 min in bacterial suspension. Light conditions displayed the highest hairy root induction rates compared with dark condition. Various culture media are different in terms of types and amounts of nutrients and have influence on growth rate. The maximum growth rate (1.61 g fr wt/50 ml) of hairy roots were obtained in 1/2 MS medium. Rosmarinic acid content in transformed roots (213.42 µg/g dry wt) was significantly higher than non-transformed roots (52.28 µg/ g dry wt).


Genetika ◽  
2015 ◽  
Vol 47 (1) ◽  
pp. 71-84
Author(s):  
Snezana Milosevic ◽  
Milena Lojic ◽  
Dragana Antonic ◽  
Aleksandar Cingel ◽  
Angelina Subotic

Impatiens walleriana L. shoots were inoculated with Agrobacterium rhizogenes A4M70GUS and the effects of genetic transformation on the catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) activities in wounded region of stems and unwounded leaves were evaluated 10, 24, 240 and 720 hours after inoculation. Following Agrobacterum infection activities of plant antioxidative enzymes changed in a time-dependent manner indicating that dynamic processes occurred during plant-Agrobacterium interaction, plant cell transformation and formation of hairy roots. Appearance of hairy roots on wound sites of shoots was observed ten days after inoculation with A. rhizogenes and the root induction frequency was 100%. Among selected hairy root lines significant differences in growth rate and biomass production were observed and an average 3-fold increase in biomass production was observed for the best growing hairy root line compared with the untransformed roots. PCR analysis showed presence of uidA, rolB, rolC and rolD genes in all analyzed I. walleriana L. hairy root lines, while amplification fragment of rolA gene was detected in 83.3% transformed lines. Efficient transformation protocol for I. walleriana L described in this work offer possibilities to generate hairy root cultures for in vitro propagation of plant viruses.


Sign in / Sign up

Export Citation Format

Share Document