scholarly journals FORMULATION AND EVALUATION OF GASTRO RETENTIVE DRUG DELIVERY SYSTEM OF ZANAMIVIR USING DIFFERENT POLYMERS

Author(s):  
V. Vijaya Kumar ◽  
B. Deekshi Gladiola ◽  
C. Madhusudhana Chetty ◽  
R. E. Ugandar

The objective of the present study is to develop gastro retentive drug delivery system of Zanamivir .Floating tablets of Zanamivir were developed with a gas generating agent NaHCO3 and in combination of different hydrophobic and hydrophilic polymers like xanthan gum, guar gum, HPMC and methyl cellulose .In the present work attempts have been made to prepare six formulations of Zanamivir in different ratios of drug and polymer to get a desired release profile by direct compression method .All the prepared tablets were evaluated in terms of pre compression and post compression parameters. FTIR studies revealed the absence of drug polymer interactions .Among all the formulations F5 Showed 97.4% of in vitro drug release for 10 hours and hence formulation F5 is selected as an optimized formulation. The optimized formulation F5 was found to follow Higuchi release kinetics and zero order. Further formulation F5 was subjected to accelerated stability studies for 3 months. It showed that the optimized formulation was intact without any interactions. Finally the optimized formulation F5 complying with all properties of floating tablets was found to be satisfactory Keywords: Zanamivir, floating tablet, natural gums, sodium bicarbonate, gastro retentive drug delivery systems

Author(s):  
Sandhya Pamu ◽  
Subrahmanyam C. V. S ◽  
Patnaik K. S. K. Rao

An oral dosage form containing gastro-retentive floating tablets forms a stomach-specific drug delivery system for the treatment of hypertension. Valsartan belongs to the BCS class II (poo Classification System). It is desirable to improve the extent of bioavailability (23%).  The objective of the present study was to apply design of experiment to optimize floating drug delivery of valsartan by employing 22 factorial design.  Improvement of the aqueous solubility of valsartan was done by solid dispersions using hot melt extrusion technique.  Plasdone S630 copovidone is a variable carrier and drug to carrier ratio of 1:2 was optimized.  Valsartan floating tablets were prepared by employing factorial design (22), where HPMC K15M (X1) and pregelatinized starch (X2) were independent variables and drug dissolution was the dependent parameter (Y1) to prepare matrix tablets.  The factorial analysis, steepest ascent method was utilized for obtaining optimized formulation. In vitro evaluation, In vivo radiographic study and biopharmaceutical analysis in rabbits for valsartan optimized formulation (FT-5). Floating lag time (FLT) for valsartan optimized formulation (FT-5) was 15 s and total floating time (TFT) of the tablets was about 33 h, which was satisfactory.  A four-point (1 h, 4 h, 8 h and 16 h) dissolution analysis gave satisfactory dissolution profile up to 24 h.  The release kinetics of valsartan optimized formulation (FT-5) followed zero order and the release mechanism was found to be Korsemeyer Peppas model, i.e. swelling type.  The dissolution efficiency for valsartan floating tablets was 1190.89% against the marketed formulation of 39.77%. The accelerated stability profile of valsartan optimized formulation (FT-5) was evaluated in terms of drug content and percent cumulative dissolution of valsartan in 24 h, in a 6 months study.  In vivo X-ray image study for valsartan optimized formulation (FT-5) indicated the presence of intact tablet up to 12 h in gastric region of rabbit.  The biopharmaceutical analysis in rabbits was conducted for valsartan optimized formulation (FT-5). The HPLC method was established and validated for the in vivo analysis.  The Cmax was 453.2 ng/mL compared to that of the marketed tablets (522.4 ng/mL).  The mean residence time (MRT) for the valsartan optimized formulation (FT-5) was 14.82 h as against 4 h for marketed tablet.  The relative bioavailability of valsartan optimized formulation (FT-5) was 650% higher than the marketed tablet.  To overcome the poor bioavailability of valsartan, it was suitably modified using hot-melt extrusion for improving therapeutic outcome. In conclusion, gastro-retentive drug delivery system is an excellent approach for improving the bioavailability of valsartan.     


Author(s):  
Shyam Narayan Prasad ◽  
Ashok Kumar Sahoo ◽  
Abhijit V. Gothoskar

The present studies discuss about the quality by design (QbD)-based development and evaluation of chronomodulated release drug delivery system of amoxicillin trihydrate for management of bacterial infection. Initially, target product profile was defined and critical quality attributes were earmarked. Risk assessment study was performed for identifying the critical material attributes. Preformulation studies were carried out, and direct compression method was employed for the preparation of bilayer matrix tablets containing a delayed and a sustained release layer for preliminary optimization. Systematic formulation optimization was carried out using central composite design by selecting the concentration of Eudragit-L100 D55 and HPMCK4M. Mathematical modeling was performed and optimized compositions of the polymers were identified from the design space. Moreover, the prepared bilayer tablets were evaluated for various tablet properties including in vitro drug release study, release kinetics evaluation and characterized for FTIR, DSC, XRD, SEM studies, in vitro was-off test, antimicrobial assay and accelerated stability studies. In a nutshell, the present studies indicated the supremacy of designing a chronomodulated release bilayer tablet formulations of amoxicillin trihydrate for effective management of bacterial infections.


Author(s):  
Sai Sowjanya Palla ◽  
Rajkumar Kotha ◽  
Anusha Paladugu ◽  
E. Rajesh Kumar Reddy ◽  
Suryasri Lavanya Adavi ◽  
...  

Oral delivery of the drug is by far the most preferable route of drug delivery due to the ease of administration, patient compliance and flexibility in the formulations but has a drawback of non-site specificity and short gastric resident time. In recent years, scientific and technological advancements have been made in the development of novel drug delivery systems by overcoming physiological troubles such as short gastric residence times and unpredictable gastric emptying times. Among Several approaches of floating systems, Bilayer floating technology is considered as promising approach. It combines the principle of bilayer technology and floating mechanism. The combined principle of bilayer floating tablet helps to release initial dose from the immediate release layer to reach the plasma concentration and then the floating layer absorbs gastric fluid forming an impermeable colloidal gel barrier on its surface, maintains a bulk density less than unity and thereby remains buoyant in stomach providing steady state concentration of drug in system. This review focuses on bilayer floating tablet technology a new era of gastro retentive drug delivery system, its advantages over conventional tablets and it also summarizes the bilayer tablet presses used in the industry, formulation design and evaluation parameters of bilayer floating tablets.  


Author(s):  
Dumpeti Janardhan ◽  
Sreekanth Joginapally ◽  
Bharat V. ◽  
Rama Subramaniyan P.

The purpose of this investigation was to prepare a gastroretentive drug delivery system of Ofloxacin. Ofloxacin is a fluoroquinolone antibacterial which acts by inhibiting the topoisomerase enzyme which is essential in the reproduction of the bacterial DNA. It is highly soluble in acidic media and precipitates in alkaline media thereby losing its solubility. Hence, a gastroretentive system was developed to enhance the bioavailability by retaining it in the acidic environment of the stomach. Different formulations were formulated using various concentrations of hydroxy propyl methyl cellulose, sodium carboxy methyl cellulose, sodium bicarbonate and citric acid. The formulations were evaluated for quality control tests and all the physical parameters evaluated are within the acceptable limits of Indian Pharmacopoeia. All the formulations were subjected to in-vitro dissolution studies and compared with the marketed formulation. The floating lag time was below 15 seconds for all the formulations except F1 and F2. The floating duration was found to be more than 24 hours in all except F1, F2 and F10. Formulations F7 and F8 were used to study the effect of sodium bicarbonate and formulations F9 and F10 for the effect of hardness on the drug release. Drug release kinetics was studied for prepared formulations and optimized formulation F5 was found to follow zero order kinetics with r2 =0.993. The statistical analysis of the parameters of dissolution data obtained before and after storage for 3 months at 25°C/ 60%RH and 40°C/75%RH showed no significant change indicating the two dissolution profiles were similar.


2019 ◽  
Vol 12 (8) ◽  
pp. 3649
Author(s):  
Veeranagoud Biradar ◽  
Jeevan Matada Basavarajaiah ◽  
Myat Thu Thu Win ◽  
Leneena Gudugunta ◽  
KV Suresh ◽  
...  

Author(s):  
Saritha Chukka

ABSTRACT Objective: The present study involves preparation and evaluation of floating tablets of ritonavir for improving the drug bioavailability by prolongation of gastric residence time.Ritonavir is an antiretroviral agent used in treatment of HIV and viral diseases has been taken as a model drug in the present investigation because of its low biological half life (3-5h). Moreover it is primarily absorbed from stomach. Materials and Methods: Ritonavir floating tablets were prepared by the dry granulation technique, using guar gum and xanthan gum as polymers, sodium bicarbonate as effervescent agent, PVP as binding agent, Di calcium phosphate as diluents, Crospovidone as swelling agent and magnesium stearate as lubricant. The prepared tablets were evaluated for various physico-chemical parameters. Results: Drug-excipient interaction studies were conducted by FTIR and DSC. The results suggested that there was no incompatibility between the drug and polymers. The prepared tablets were evaluated for their physical characteristics. All the parameters were within the pharmacopoeial limits.  Further, tablets were also studied for their floating properties and in vitro drug release characteristics. The tablets exhibited controlled and prolonged drug release profiles. The developed formulation was found to be stable. Conclusion: The developed floating tablets of ritonavir exhibit prolonged release upto 12 h, and thus may improve bioavailability and minimize fluctuations in plasma drug concentrations. Key words: Ritonavir, floating tablets, gastric residence time, gastroretentive drug delivery system 


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hitesh Chavda ◽  
Ishan Modhia ◽  
Anant Mehta ◽  
Rupal Patel ◽  
Chhagan Patel

Bioadhesive superporous hydrogel composite (SPHC) particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content,in vitrodrug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.


2020 ◽  
Vol 13 (1) ◽  
pp. 257-266
Author(s):  
Kapil Jalodiya ◽  
Sourabh Jain ◽  
Karunakar Shukla

Gastro-retentive dosage forms enable prolonged and continuous input of the drug to the upper parts of the gastrointestinal tract and improve the bioavailability of medications those are characterized by a narrow absorption window. The purpose of this research was to develop a novel gastro retentive drug delivery system based on direct compression method for sustained delivery of active agent to improve the bioavailability, reduce the number of doses and to increase patient compliance. Gastro retentive floating tablets of terbinafine were prepared by direct compression method using altered concentrations of HPMC K4, HPMC K15 and PVP K30 as polymers. The prepared tablets of terbinafine were evaluated tablet hardness, uniformity of weight, friability, uniformity of content, in vitro buoyancy test, swelling index, in vitro dissolution study and stability study. All the compositions were resulted in adequate Pharmacopoeial limits. Compatibility studies was execution during FTIR shown that there was absence of probable chemical interaction between pure drug and excipients. The varying concentration of gas generating agent and polymers was found to affect on in-vitro drug release and floating lag time. In vitro drug release of floating gastro retentive tablet of terbinafine shown that the formulation F5 was found to be the best formulation as it releases 96.22% terbinafine in a controlled manner for an extended period of time (up to 480 min). The release data was fitted to various mathematical models such as Higuchi, Korsmeyer-Peppas, First order and Zero order to evaluate the kinetics and mechanism of the drug release. Prepared floating tablets of terbinafine may prove to be a potential candidate for safe and effective controlled drug delivery over an extended period of time for gastro retentive drug delivery system.


2021 ◽  
Author(s):  
Cheran K ◽  
Udaykumar B Bolmal ◽  
Archana S Patil ◽  
Umashri A Kokatanur ◽  
Rajashree S Masareddy

Abstract Background: The goal of this study was to develop a gastro retentive floating drug delivery system that would improve site specific activity, patient compliance and therapeutic efficacy.Methodology: Floating microspheres of Miglitol were formulated by double emulsion method using ethyl cellulose and eudragit E100 different weight ratio and PVA as an emulsifier. It has been prepared with respect quantity of polymer concentration and stirring speed to evaluate for % buoyancy, drug entrapment efficiency, particle size drug release rate. Result: The percent of buoyancy, drug entrapment efficiency, particle size, and percentage yield were increased with increase the polymer mixture concentration. Among all formulation batches, F6 showed acceptable results drug entrapment efficiency (86.57%) and buoyancy (94.25%). F10 formulation was prepared to check the predicted and actual factors and compared with optimized formulation F6. The drug release was increased as the polymer concentration was decrease. The kinetic model zero order had the highest regression coefficient value, it was described as a sustained release dosage form. According to ICH guideline accelerated stability studies of F6 and F10 formulations were conducted for 90 days. After 90 days buoyancy and in vitro drug release was performed and the results were F6 and F10 buoyancy was found to be 88.21%, 87.22% and in vitro drug release was found to be 62.87%, 63.51%. Conclusion: The present study, showed compatibility of drug with polymers by FTIR in formulation. Floating microsphere of Miglitol was prepared by double emulsion technique. The F6 Miglitol floating microsphere was optimized formulation demonstrated with excellent drug entrapment performance (86.57%), good floating behaviour (94.25%), and the largest particle size (670µm). The present study concludes that floating based gastro retentive delivery system of Miglitol microspheres has a safe and effective drug delivery system with increased therapeutic efficacy and a longer duration of action.


Author(s):  
Anukumar E ◽  
Nagaraja T S ◽  
Yogananda R ◽  
Bharathi D R

The present work is to prepare and characterization of self nano emulsifying drug delivery system containing Anti-hypertensive drug. Losartan is a competitive antagonist and inverse agonist of angiotensin 2 receptor. The SNEDDS is prepared by Sonication method using a components of SPAN 60/Eudragit RS 100 as a surfactant, PVA as a Co-surfactant, Iso propyl alcohol as a solvent and DCM as a co-solvent. The prepared SNEDDS was evaluated for Fourier transform infrared spectroscopy, Surface morphology, particle size, zeta potential,  drug entrapment efficiency, visual assessment, self-emulsification time, Robustness to dilution, in-vitro drug release and short term stability studies. The in-vitro drug release data of all the formulations were found to be zero order over a period of 24 h and Formulation F7 shows good results for the drug release kinetics as controlled release. The stability studies data was found that there was no such difference in drug EE and in-vitro drug release.


Sign in / Sign up

Export Citation Format

Share Document