scholarly journals Design of a Slotted Waveguide Antenna by Means of VBScript Scripting Language Macros in CAD Ansys HFSS

Author(s):  
V. G. Koshkid’ko ◽  
M. M. Migalin

Introduction. Modern antenna devices contain a large number of repeating elements. The process of development of CAD models of such devices requires repeatedly performed operations that is a routine task for an engineer. Therefore, the problem of repeating operations automation arises when constructing antenna models with periodic structures.Aim. To demonstrate the automation of slotted waveguide antennas design process in CAD Ansys HFSS.Materials and methods. In order to determine the dimensions of the slotted waveguide antenna the energy method was used. Automation procedure of the design of the slotted waveguide antennas in CAD Ansys HFSS using the Visual Basic Scripting Edition macros was presented.Results. In order to design and edit slotted waveguide antennas in CAD Ansys HFSS four macros in the VBScript language were established: for slot subtraction from a broad wall of a rectangular waveguide at given coordinates; for removing the original slots created using the previous macro; for drawing a polyline passing through the centers of the slots, in order to verify the antenna’s near field realized distribution; for inclined slot subtraction from a narrow wall of a rectangular waveguide at given coordinates. Results of the macros usage were presented.Conclusion. The above mentioned macros allow one to automate the routine steps during the process of creating and deleting objects while designing an antenna model with periodic structures in CAD Ansys HFSS. Specified procedures for creating macros could be extended to a wide class of tasks related to the studies of characteristics of electromagnetic structures including repeating objects (phased antenna arrays, reflective arrays, slotted waveguide antennas, fractal antennas, log-periodic antennas, multi-layer lens antennas, ladder-type microwave filters).

Author(s):  
A. O. Pelevin ◽  
A. M. Lerer ◽  
G. F. Zargano

The article describes the computer simulation of phased antenna arrays consisting of slotted waveguide antennas with air and dielectric filling. It is shown that inser-tion of a thin dielectric layer shifts the operating frequency range of phased anten-na arrays by 1 GHz or more down in frequency while maintaining directional char-acteristics.


2019 ◽  
Vol 11 (7) ◽  
pp. 568-576 ◽  
Author(s):  
Grigory Kuznetsov ◽  
Vladimir Temchenko ◽  
Maxim Miloserdov ◽  
Dmitry Voskresenskiy

AbstractThis paper presents two modifications of compressive sensing (CS)-based approach applied to the near-field diagnosis of active phased arrays. CS-based antenna array diagnosis allows a significant reduction of measurement time, which is crucial for the characterization of electrically large active antenna arrays, e.g. used in synthetic aperture radar. However, practical implementation of this method is limited by two factors: first, it is sensitive to thermal instabilities of the array under test, and second, excitation reconstruction accuracy strongly depends on the accuracy of the elements of the measurement matrix. First proposed modification allows taking into account of thermal instability of the array by using an iterative ℓ1-minimization procedure. The second modification increases the accuracy of reconstruction using several simple additional measurements.


Author(s):  
N. E. Nenartovich ◽  
V. A. Balagurovsky ◽  
A. O. Manichev

The problem of measuring the parameters of phased antenna arrays without mechanical displacements of the test and / or the auxiliary antenna. Examples demonstrating the high efficiency and practical importance of this approach to measurement.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dinh-Liem Nguyen ◽  
Trung Truong

AbstractThis paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures. The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency. The factorization method is studied as an analytical and numerical tool for solving the inverse problem. We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer. Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method.


2020 ◽  
Author(s):  
Shefali Pawar ◽  
Hossein Mehrpour Bernety ◽  
Harry G. Skinner ◽  
Seong-Youp Suh ◽  
Andrea Alù ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document