scholarly journals A Prototype of Automotive 77 GHz Radar

Author(s):  
O. I. Bureneva ◽  
I. G. Gorbunov ◽  
G. V. Komarov ◽  
A. A. Konovalov ◽  
M. S. Kupriyanov ◽  
...  

Introduction. Automotive radars are the main tools for providing traffic safety. The development of such radars involve a number of technical difficulties due to the manufacture of high-precision extremely high-frequency (EHF) printed circuit boards. To facilitate the process of creating such devices, the existing algorithms for radar information processing should be debugged using prototypes from manufacturers of mm-band transceivers. However, the parameters of such boards are not known in advance, and the actual operating conditions of the as-produced automotive radars raise new challenges to target tracking algorithms. Therefore, checking the performance of such boards is a relevant research problem.Aim. To evaluate the performance of a millimeter-wave automotive radar prototype and to test target tracking algorithms using this prototype.Materials and methods. An original target tracking method was used, which considers the constraints on the use of additional data sources about the radar carrier movement.Results. An experimental performance evaluation of a 77 GHz automotive radar prototype was carried out. The effectiveness of primary processing for the target class “vehicle” in the millimetre range was checked. Original algorithms for target tracking were proposed and tested.Conclusion. The obtained results show that the prototype board of a transceiver chip is capable of testing tracking algorithms without creating an own automotive radar prototype. Thus, the developmental process can be significantly shortened. Moreover, after creating a hardware solution, the developer obtains a reference device to test and configure an own product without using extremely expensive and rare EHF equipment.

2014 ◽  
Vol 42 (1) ◽  
pp. 2-15
Author(s):  
Johannes Gültlinger ◽  
Frank Gauterin ◽  
Christian Brandau ◽  
Jan Schlittenhard ◽  
Burkhard Wies

ABSTRACT The use of studded tires has been a subject of controversy from the time they came into market. While studded tires contribute to traffic safety under severe winter conditions by increasing tire friction on icy roads, they also cause damage to the road surface when running on bare roads. Consequently, one of the main challenges in studded tire development is to reduce road wear while still ensuring a good grip on ice. Therefore, a research project was initiated to gain understanding about the mechanisms and influencing parameters involved in road wear by studded tires. A test method using the institute's internal drum test bench was developed. Furthermore, mechanisms causing road wear by studded tires were derived from basic analytical models. These mechanisms were used to identify the main parameters influencing road wear by studded tires. Using experimental results obtained with the test method developed, the expected influences were verified. Vehicle driving speed and stud mass were found to be major factors influencing road wear. This can be explained by the stud impact as a dominant mechanism. By means of the test method presented, quantified and comparable data for road wear caused by studded tires under controllable conditions can be obtained. The mechanisms allow predicting the influence of tire construction and variable operating conditions on road wear.


2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


2011 ◽  
Vol 10 (4) ◽  
pp. 691-702 ◽  
Author(s):  
K.S. Kaawaase ◽  
F. Chi ◽  
J. Shuhong ◽  
Q. Bo Ji

Author(s):  
Christian Wendeln ◽  
Edith Steinhäuser ◽  
Lutz Stamp ◽  
Bexy Dosse-Gomez ◽  
Elisa Langhammer ◽  
...  

The deposition of electroless Copper on dielectric substrates and the subsequent electrolytic build-up of a thicker Copper layer are widely used steps within the production of modern Printed Circuit Boards (PCB), and while there have been numerous developments within PCB production, the current manufacturing technologies continue to be reliant on the autocatalytic deposition of Copper from a solution containing formaldehyde as the reducing agent, even though the chemistry is known to pose a risk to human health. Further, as the high volatility of formaldehyde generally increases the exposure to the hazard, it is understood that critical air concentrations can easily be exceeded. With this in mind it is clear that the development of environmental and user friendly electroless Copper baths has become a subject of importance. Nevertheless, the introduction of “green” plating chemistry into the market remains a challenge due to high industrial standards in terms of performance and cost-efficiency, which have been established by the conventional plating products and limit their replacement. In the case of the electroless Copper baths, formaldehyde-free alternatives have to show excellent substrate coverage with metal, provide coatings with high conductivity and uniformity and should lead to very good reliability results. Moreover, the solution, and final Copper layer have to function with the diverse range of dielectric materials that are currently employed. Due to application needs, there has been a shift within PCB design towards the use of very smooth substrate materials with low coefficients of thermal expansion. Such materials offer the opportunity for further miniaturization of circuits and are optimal for adoption within packaged die components (IC substrates). However, smooth substrate topographies typically lead to a limited adhesion of the electroless Copper layer, and increases the risk of delamination or blister formation. To prevent this, the properties of the metal film itself, as well as the chemical properties of the Copper bath, from which it is deposited, are critical, with a key factor being that the deposited layer is generated under internal tensile stress, as this has been shown to be of importance in reducing blister occurrence. While formaldehyde based plating solutions have been modified to satisfy this requirement through the adoption of additives and organic substances, there is still very little experience available regarding chemical approaches utilizing other reducing agents. Changing the reducing agent generally requires a complete redesign of the electroless system, including careful selection of the complexing agents and additives, readjustment of the chemical concentrations and optimization of the baths physical operating conditions. In this work we describe a new type of formaldehyde-free electroless Copper solution suitable for a broad set of applications and materials, and specifically the processing of next-generation substrates. This new plating solution has been successfully applied in both laboratory and production-scale environments, with its performance being evaluated and benchmarked against an existing formaldehyde-containing reference. The obtained metal layer has been characterized through a number of analytical techniques, including microscopy, XRF, SEM, adhesion tests as well as non-blister performance. Based on the data obtained we believe that the newly developed solution utilizing a non-formaldehyde reducing agent provides a suitable technology for PCB production without a loss of process performance, and thus provide a sustainable “green” alternative to the industry.


Sign in / Sign up

Export Citation Format

Share Document