scholarly journals Optimal Tuning of FOPID-Like Fuzzy Controller for High-Performance Fractional-Order Systems

2022 ◽  
Vol 70 (1) ◽  
pp. 171-180
Author(s):  
Ahmed M. Nassef ◽  
Hegazy Rezk
Author(s):  
Rodolfo E. Haber-Guerra ◽  
Rodolfo Haber-Haber ◽  
Diego Martín Andrés ◽  
Angel Alique Palomar

The high-performance drilling (HPD) process has a significant impact on production in many industries, such as the automotive, die/mold and aerospace industries. However, cutting conditions for drilling are generally chosen from a machining-data handbook, requiring operator experience and skill. In order to improve drilling efficiency while preserving tool life, the current study focuses on the design and implementation of a simple, optimal fuzzy-control system for drilling force. The main topic of this study is the design and implementation of a networked fuzzy controller. The control system consists of a two-input (force error and change of error), single-output (feed-rate increment) fuzzy controller with nine control rules, the sup-product compositional operator for the compositional rule of inference, and the center of area as the defuzzification method. The control algorithm is connected to the process through a multipoint interface (MPI) bus, a proprietary programming, and communication interface for peer-to-peer networking that resembles the PROFIBUS protocol. The output (i.e., feed-rate) signal is transmitted through the MPI; therefore, network-induced delay is unavoidable. The optimal tuning of the fuzzy controller using a maximum known delay is based on the integral time absolute error (ITAE) criterion. The goal is to obtain the optimal tuning parameters for the input scaling factors while minimizing the ITAE performance index. In this study, a step in the force reference signal is considered a disturbance, and the goal is to assess how well the system follows set-point changes using the ITAE criterion. The optimization is performed using the Nelder–Mead simplex (direct search) method. The main advantage of the approach presented herein is the design of a simple fuzzy controller using a known maximum allowable delay to deal with uncertainties and nonlinearities in the drilling process and delays in the network-based application. The results demonstrate that the proposed control strategy provides an excellent transient response without overshoot and a slightly higher drilling time than the CNC working alone (uncontrolled). A major issue in high performance drilling is the increase in cutting force and torque that occurs as the drill depth increases. Therefore, the fuzzy-control system reduces the influence of these factors, thus eliminating the risk of rapid drill wear and catastrophic drill breakage.


Author(s):  
Li Junmin ◽  
Li Yuting

This paper addresses the problems of the robust stability and stabilization for fractional order systems based on the uncertain Takagi-Sugeno fuzzy model. A sufficient and necessary condition of asymptotical stability for fractional order uncertain T-S fuzzy model is given, and a parallel distributed compensate fuzzy controller is designed to asymptotically stabilize the model. The results are obtained in terms of linear matrix inequalities. Finally, a numerical example and fractional order Van der Pol system are given to show the effectiveness of our results.


2008 ◽  
Vol 42 (6-8) ◽  
pp. 825-838 ◽  
Author(s):  
Saïd Guermah ◽  
Saïd Djennoune ◽  
Maâmar Bettayeb

Author(s):  
Cuifeng Shen ◽  
Hanhua Yang

Background: A multi-motor synchronous drive control system is widely used in many fields, such as electric vehicle drive, paper making, and printing. Methods: On the basis of the optimized structure of ADRC, a fuzzy first-order active disturbance rejection controller was developed. Double channels compensation of extended state observer was employed to estimate and compensate the total disturbances, and an approximate linearization and deterministic system was obtained. As the parameters of ADRC are adjusted online by a fuzzy controller, the performance of the controller is effectively improved. Results: Based on the SIMATIC S7-300 induction motor control experimental platform, the performances of anti-interference and tracking performance are tested. Conclusion: The actual experimental results indicated that compared with PID control, induction motor drive system controlled by fuzzy ADRC has higher dynamic and static status and following performances and stronger anti-interference abilities.


Sign in / Sign up

Export Citation Format

Share Document