scholarly journals Prediction Model Using Reinforcement Deep Learning Technique for Osteoarthritis Disease Diagnosis

2022 ◽  
Vol 42 (1) ◽  
pp. 257-269
Author(s):  
R. Kanthavel ◽  
R. Dhaya
Author(s):  
Seifeddine Messaoud ◽  
Soulef Bouaafia ◽  
Amna Maraoui ◽  
Lazhar Khriji ◽  
Ahmed Chiheb Ammari ◽  
...  

At the end of 2019, the infectious coronavirus disease (COVID-19) was reported for the first time in Wuhan, and, since then, it has become a public health issue in China and even worldwide. This pandemic has devastating effects on societies and economies around the world, and poor countries and continents are likely to face particularly serious and long-lasting damage, which could lead to large epidemic outbreaks because of the lack of financial and health resources. The increasing number of COVID-19 tests gives more information about the epidemic spread, and this can help contain the spread to avoid more infection. As COVID-19 keeps spreading, medical products, especially those needed to perform blood tests, will become scarce as a result of the high demand and insufficient supply and logistical means. However, technological tests based on deep learning techniques and medical images could be useful in fighting this pandemic. In this perspective, we propose a COVID-19 disease diagnosis (CDD) tool that implements a deep learning technique to provide automatic symptoms checking and COVID-19 detection. Our CDD scheme implements two main steps. First, the patient’s symptoms are checked, and the infection probability is predicted. Then, based on the infection probability, the patient’s lungs will be diagnosed by an automatic analysis of X-ray or computerized tomography (CT) images, and the presence of the infection will be accordingly confirmed or not. The numerical results prove the efficiency of the proposed scheme by achieving an accuracy value over 90% compared with the other schemes.


2021 ◽  
Author(s):  
Hemlata Jain ◽  
Ajay Khunteta ◽  
Sumit Private Shrivastav

Abstract Machine Learning and Deep learning classification has become an important topic in the area of Telecom Churn Prediction. Researchers have come out with very efficient experiments for Churn Prediction and have given a new direction to the telecommunication Industry to save their customers. Companies are eagerly developing the models for predicting churn and putting their efforts to save the potential churners. Therefore, for a better churn prediction model, finding the factors of churn is very important. This study is aiming to find the factors of user’s churn by evaluating their past service usage details. For this purpose, study is taking the advantage of feature importance, feature normalisation, feature correlation and feature extraction. After feature selection and extraction this study performing seven different experiments on the dataset to bring out the best results and compared the techniques. First Experiment includes a hybrid model of Decision tree and Logistic Regression, second experiment include PCA with Logistic Regression and Logit Boost, third experiment using a Deep Learning Technique that is CNN-VAE (Convolutional Neural Network with Variational Autoencoder), Fourth, fifth, sixth and seventh experiments was done on Logistic Regression, Logit Boost, XGBoost and Random Forest respectively. First four experiments are hybrid models and rest are using standalone techniques. The Orange dataset was used in this technique which has 3333 subscriber’s entries and 21 features. On the other hand, these experiments are compared with already existing models that have been developed in literature studies. The performance was evaluated using Accuracy, Precision, Recall rate, F-measure, Confusion Matrix, Marco Average and Weighted Average. This study proved to get better results as compared to old models. Random Forest outperformed in this study by achieving 95% Accuracy and all other experiments also produced very good results. The study states the importance of data mining techniques for a churn prediction model and proposes a very good comparison model where all machine Learning Standalone techniques, Deep Learning Technique and hybrid models with Feature Extraction tasks are being used and compared on the same dataset to evaluate the techniques performance better.


2022 ◽  
Author(s):  
Qianqian Zhou ◽  
Shuai Teng ◽  
Xiaoting Liao ◽  
Zuxiang Situ ◽  
Junman Feng ◽  
...  

Abstract. An accurate and rapid urban flood prediction model is essential to support decision-making on flood management, especially under increasing extreme precipitation conditions driven by climate change and urbanization. This study developed a deep learning technique-based data-driven flood prediction model based on an integration of LSTM network and Bayesian optimization. A case study in north China was applied to test the model performance and the results clearly showed that the model can accurately predict flood maps for various hyetograph inputs, meanwhile with substantial improvements in computation time. The model predicted flood maps 19,585 times faster than the physical-based hydrodynamic model and achieved a mean relative error of 9.5 %. For retrieving the spatial patterns of water depths, the degree of similarity of the flood maps was very high. In a best case, the difference between the ground truth and model prediction was only 0.76 % and the spatial distributions of inundated paths and areas were almost identical. The proposed model showed a robust generalizability and high computational efficiency, and can potentially replace and/or complement the conventional hydrodynamic model for urban flood assessment and management, particularly in applications of real time control, optimization and emergency design and plan.


2020 ◽  
Author(s):  
Liwen Zhang ◽  
Di Dong ◽  
Wenjuan Zhang ◽  
Xiaohan Hao ◽  
Mengjie Fang ◽  
...  

2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098284
Author(s):  
Tingting Qiao ◽  
Simin Liu ◽  
Zhijun Cui ◽  
Xiaqing Yu ◽  
Haidong Cai ◽  
...  

Objective To construct deep learning (DL) models to improve the accuracy and efficiency of thyroid disease diagnosis by thyroid scintigraphy. Methods We constructed DL models with AlexNet, VGGNet, and ResNet. The models were trained separately with transfer learning. We measured each model’s performance with six indicators: recall, precision, negative predictive value (NPV), specificity, accuracy, and F1-score. We also compared the diagnostic performances of first- and third-year nuclear medicine (NM) residents with assistance from the best-performing DL-based model. The Kappa coefficient and average classification time of each model were compared with those of two NM residents. Results The recall, precision, NPV, specificity, accuracy, and F1-score of the three models ranged from 73.33% to 97.00%. The Kappa coefficient of all three models was >0.710. All models performed better than the first-year NM resident but not as well as the third-year NM resident in terms of diagnostic ability. However, the ResNet model provided “diagnostic assistance” to the NM residents. The models provided results at speeds 400 to 600 times faster than the NM residents. Conclusion DL-based models perform well in diagnostic assessment by thyroid scintigraphy. These models may serve as tools for NM residents in the diagnosis of Graves’ disease and subacute thyroiditis.


Sign in / Sign up

Export Citation Format

Share Document