Sustainability Evaluation of Modern Photovoltaic Agriculture Based on Interval Type-2 Fuzzy AHP-TOPSIS and Least Squares Support Vector Machine Optimized by Fireworks Algorithm

2022 ◽  
Vol 119 (1) ◽  
pp. 163-188
Author(s):  
Yi Liang ◽  
Haichao Wang ◽  
Wei-Chiang Hong
2021 ◽  
Vol 13 (4) ◽  
pp. 1796
Author(s):  
Guangqi Liang ◽  
Dongxiao Niu ◽  
Yi Liang

With the development of renewable energy, renewable energy incubators have emerged continuously. However, these incubators present a crude development model of low-level replication and large-scale expansion, which has triggered a series of urgent problems including unbalanced regional development, low incubation efficiency, low resource utilization, and vicious competition for resources. There are huge challenges for the sustainable development of incubators in the future. A scientific and accurate evaluation approach is of great significance for improving the sustainability of renewable energy incubators. Therefore, this paper proposes a novel method combining an interval type-II fuzzy analytic hierarchy process (AHP) with mind evolutionary algorithm-modified least-squares support vector machine (MEA-MLSSVM). The indicator system is established from two aspects: service capability and operational efficiency. TOPSIS integrated with an interval type-II fuzzy AHP is employed for index weighting and assessment. In the least-squares support vector machine (LSSVM), the traditional radial basis function is replaced with the wavelet transform function (WT), and the parameters are fine-tuned by the mind evolutionary algorithm (MEA). Accordingly, the establishment of a comprehensive sustainability evaluation model for renewable energy incubators is accomplished in this paper. The experimental study reveals that this novel technique has the advantages of scientificity and precision and provides a decision-making basis for renewable energy incubators to realize sustainable operation.


2013 ◽  
Vol 40 (3) ◽  
pp. 453-463 ◽  
Author(s):  
Liyang Wang ◽  
Zhi Liu ◽  
C. L. Philip Chen ◽  
Yun Zhang

2009 ◽  
Vol 35 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Xue-Song WANG ◽  
Xi-Lan TIAN ◽  
Yu-Hu CHENG ◽  
Jian-Qiang YI

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengpu Li ◽  
Yize Sun

Ink transfer rate (ITR) is a reference index to measure the quality of 3D additive printing. In this study, an ink transfer rate prediction model is proposed by applying the least squares support vector machine (LSSVM). In addition, enhanced garden balsam optimization (EGBO) is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. 102 sets of experimental sample data have been collected from the production line to train and test the hybrid prediction model. Experimental results show that the coefficient of determination (R2) for the introduced model is equal to 0.8476, the root-mean-square error (RMSE) is 6.6 × 10 (−3), and the mean absolute percentage error (MAPE) is 1.6502 × 10 (−3) for the ink transfer rate of 3D additive printing.


Sign in / Sign up

Export Citation Format

Share Document