scholarly journals Assessment of Seismic Damage in Nativity Church in Bethlehem Using Pushover Analysis

2021 ◽  
Vol 15 (4) ◽  
pp. 349-366
Author(s):  
Belal Almassri ◽  
Ali Safiyeh
2016 ◽  
Vol 10 (1) ◽  
pp. 192-209 ◽  
Author(s):  
A.J. Kappos ◽  
V.K. Papanikolaou

A large part of the building stock in seismic-prone areas worldwide are masonry structures that have been designed without seismic design considerations. Proper seismic assessment of such structures is quite a challenge, particularly so if their response well into the inelastic range, up to local or global failure, has to be predicted, as typically required in fragility analysis. A critical issue in this respect is the absence of rigid diaphragm action (due to the presence of relatively flexible floors), which renders particularly cumbersome the application of popular and convenient nonlinear analysis methods like the static pushover analysis. These issues are addressed in this paper that focusses on a masonry building representative of Southern European practice, which is analysed in both its pristine condition and after applying retrofitting schemes typical of those implemented in pre-earthquake strengthening programmes. Nonlinear behaviour is evaluated using dynamic response-history analysis, which is found to be more effective and even easier to apply in this type of building wherein critical modes are of a local nature, due to the absence of diaphragm action. Fragility curves are then derived for both the initial and the strengthened building, exploring alternative definitions of seismic damage states, including some proposals originating from recent international research programmes.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Haoxiang He ◽  
Maolin Cong ◽  
Yongwei Lv

A global damage index based on multiple linear force-deformation curves in pushover analysis is presented to evaluate the integrated damage of reinforced concrete structure. The modified coefficient is provided considering the cyclic load and hysteresis energy. The number of inelastic cycles and the coefficient of hysteresis energy concentration are also introduced as damage indices. Hence, multiple damage indices about displacement and energy for performance-based design are considered. The relation of multiple damage indices or factors and the fuzzy damage set is presented by comprehensive fuzzy evaluation; hence, a performance-based multiple fuzzy seismic damage-assessment method for reinforced concrete frame structures is established. The method can be accomplished based on pushover analysis, code spectrum, and capacity spectrum method. The fuzzy seismic damage-assessment method is verified through nonlinear analysis four different structures and the corresponding results and assessment conclusions are accurate.


2009 ◽  
Vol 12 (4) ◽  
pp. 529-546 ◽  
Author(s):  
Jianwu Wei ◽  
Yong Lu

In the context of performance-based design, structural damage as a comprehensive measure of the seismic demand against the available capacity may be used as an effective performance indicator. Accurate methods of damage estimation usually require sophisticated dynamic response analysis and yet they do not necessarily yield the best results due to the great uncertainties involved in the seismic input. A simple and rational method based on well-constructed response spectra could be more desirable, especially in a design environment. In this paper, a methodology is developed to estimate the seismic damage of multi-storey reinforced concrete (RC) frames in terms of both the overall (global) damage and the damage distribution. The multi-storey frame is first transformed into an equivalent SDOF system, so that the damage in the equivalent SDOF system can be found from the damage-based inelastic spectra for a specified seismic intensity. Numerical investigation on a series of generic frames under a selection of real ground motions indicates that the SDOF damage and the overall damage of the actual frame correlates in a consistent manner, thus the conversion from the established SDOF damage back to the overall frame damage is rather straightforward. Two alternative methods are proposed for the prediction of the distribution of damage along the frame height, one using the modal pushover analysis, and the other based on the structural characterization using a storey capacity factor.


2011 ◽  
Vol 255-260 ◽  
pp. 2496-2499 ◽  
Author(s):  
Mohammadreza Vafaei ◽  
Azlan bin Adnan ◽  
Mohammadreza Yadollahi

Inter-story drift ratio is a general damage index which is being used to detect damaged stories after severe ground motions. Since this general damage index cannot detect damaged elements also the severity of imposed damages on elements, a new real-time seismic damage detection method base on artificial neural networks was proposed to overcome this issue. This approach considers nonlinear behaviour of structures and not only is capable of detecting damaged elements but also can address the severity of imposed damages. Proposed algorithm was applied on a 3-story concrete building .The obtained results confirmed accuracy and robustness of this method.


2018 ◽  
Vol 9 (5) ◽  
pp. 181
Author(s):  
Machach Laila ◽  
Mouzzoun Mouloud ◽  
Moustachi Oum El Khaiat ◽  
Taleb Ali

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Nidiasari Jati Sunaryati Eem Ikhsan

Struktur rangka baja pemikul momen merupakan jenis struktur baja tahan gempa yang populer digunakan. Daktilitas struktur yang tinggi merupakan salah satu keunggulan struktur ini, sehingga mampu menahan deformasi inelastik yang besar. Dalam desain, penggunaan metode desain elastis berupa evaluasi non-linear static (Pushover analysis) maupun evaluasi non-linear analisis (Time History Analysis) masih digunakan sebagai dasar perencanaan meskipun perilaku struktur sebenarnya saat kondisi inelastik tidak dapat digambarkan dengan baik. Metode Performance-Based Plastic Design (PBPD) berkembang untuk melihat perilaku struktur sebenarnya dengan cara menetapkan terlebih dahulu simpangan dan mekanisme leleh struktur sehingga gaya geser dasar yang digunakan adalah sama dengan usaha yang dibutuhkan untuk mendorong struktur hingga tercapai simpangan yang telah direncanakan. Studi dilakukan terhadap struktur baja 5 lantai yang diberi beban gempa berdasarkan SNI 1726, 2012 dan berdasarkan metode PBPD. Hasil analisa menunjukkan bahwa struktur yang diberi gaya gempa berdasarkan metode PBPD mencapai simpangan maksimum sesuai simpangan rencana dan kinerja struktur yang dihasilkan lebih baik .


2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


Sign in / Sign up

Export Citation Format

Share Document