scholarly journals MODELING OF PHYSICAL PROCESSES OF ENERGY CONVERSION IN SMALL-SIZED VORTEX ENERGY SEPARATORS

2021 ◽  
pp. 20-30
Author(s):  
Anatoliy Kulik ◽  
Sergey Pasichnik ◽  
Dmytro Sokol

The object of study in the article is the vortex effect of temperature separation in a rotating gas flow, which is realized in small-sized vortex energy separators. The subject matter is the models that describe the physical processes of energy conversion in small-sized vortex energy separators as objects of automatic control. The goal is to obtain models of a vortex energy separator reflecting its static and dynamic properties as an automatic control object. The tasks to be solved are: to develop a three-dimensional computer model of a small-sized vortex energy separator which will allow analyzing the parameters of the gas flow and physical processes of energy conversion directly inside the object and obtaining its static characteristics. A linearization method of static characteristics on the interval of input and output values is proposed which will expand the operating range without loss of linearization accuracy. A method of structural-parametric identification based on experimental logarithmic magnitude-frequency characteristics is proposed which will allow for the same set of experimental points to select the structure of the mathematical model of varying complexity depending on the specified accuracy. As a result of the work, the scheme for modeling the automatic control object was formed, consisting of the drive unit, sensor unit, and vortex energy separator, with the reflection of all the obtained operating modes. The methods used are the method of graphic linearization, Laplace transform, structural-parametric identification. The following results were obtained: a computer and linearized mathematical model of the small-sized vortex energy separator as an automatic control object reflecting its properties in the time and frequency domains was obtained. A comparative analysis of the reactions of the model and the real object to the same input action was carried out. Conclusions. The scientific novelty of the results obtained is as follows: 1) multiple graphic linearizations of one static characteristic to use the full range of the operation mode of vortex energy separator, which distinguishes it from the known;2) mathematical model structural-parametric identification for vortex energy separator with the help of known points of the Bode magnitude plots by using the interpolation polynomial and its derivatives graphs.

2017 ◽  
pp. 72-78
Author(s):  
Sergey Pachkin ◽  
Sergey Pachkin ◽  
Roman Kotlyarov ◽  
Roman Kotlyarov

One of the main tasks solved in the development of automatic control systems is the identification of the control object, which consists in obtaining its mathematical description. The nature and type of the mathematical model is determined by the goals and tasks for which it will be used. In the present case, the aim of obtaining the model is the synthesis of an automatic control system. Proceeding from the requirements of control problems, the identification problem consists in determining the structure and parameters of the mathematical model that ensure the best similarity of the model and object responses to the same input action. The article considers the experimental method of obtaining a mathematical description of the control object based on the results of measuring its input and output parameters and then processing the obtained results. The control object is the EP10 emulator made by the Oven Company, which is a miniature furnace. The emulator is used in experimental research in the process of commissioning using thermostat controls, and also applicable for educational purposes as part of training and research stands. As a result of structural identification with subsequent adjustment of the coefficients with the help of parametric identification, a model of the control object in the form of a second order aperiodic link is obtained. Parameters and type of the mathematical model allowed to make calculations and determine the parameters of adjustment of the TRM251 PID-controller. The software implementation of the automatic control system in the MatLAB environment made it possible to evaluate transient processes in a closed system. Thus, the calculation and analysis of the automatic control system in the first approximation were made. The final result can be obtained at the stage of commissioning the automatic temperature control system in the EP10 emulator using adaptation algorithms.


2020 ◽  
Vol 222 ◽  
pp. 01009
Author(s):  
Tatiana Efremova ◽  
Sergey Shchegolev

Dynamic properties of boiler sections as control objects are studied. The requirements for mathematical models and the main adjustable parameters in drum boilers are determined, on the basis of which the requirements for the designed model are made. The construction of a block diagram and calculation of transfer functions of the automatic control system of the control object. The main types of disturbances are determined: feed water and steam consumption, consumer load, fuel consumption, and feed water temperature. Each perturbation is represented as a control action. Models of the object using perturbation channels are obtained. The article considers the construction of an effective model of the system of automatic control of the drum boiler power supply based on the system’s working out of disturbing influences. The paper uses the Matlab application software and the Simulink graphical programming environment.


Author(s):  
Анатолий Сергеевич Гольцов ◽  
Hung Manh Tran

In the simplest cases, P-, PI- and PID-controllers with rigid (unchanged) parameter settings are used to control technological processes. If the mathematical model of the control object contains unknown disturbing influences and parameters that change during the control process, then a digital control system with a learning model should be used. The tasks of control, analysis and modeling of various processes and systems are solved using their mathematical models. The choice of a model is dictated by the conditions of implementation and the requirement of adequacy. The problem of developing control algorithms under uncertainty occupies one of the central places in modern control theory. To solve the arising problems of structural and parametric identification, as a rule, methods, and algorithms of the theory of adaptive control systems are used. The application of the principles of adaptation allows to ensure high accuracy of modeling with a significant change in the dynamic properties of the system under study, to unify individual subsystems and their blocks; reduce the development and debugging time of the system. This article discusses the problem of studying a digital adaptive system for turning the blades of guide apparatus (GA) of an axial compressor of gas turbine engines (GTE). The aim of the study is to increase the efficiency of the control system for turning the blades of the GA using a digital adaptive system. The gas-dynamic stability of the GTE axial compressor under changes in external conditions and engine throttling is provided by air bypass and turning the blades of the first and last compressor stages. The statement of the problem of synthesis of the system of adaptive control of the rotation of the blades of the GA compressor of the gas turbine engine is carried out. A mathematical model of the ACS in the canonical form “model of the system in the state space” and an algorithm for turning the blades of the GA using an adaptive PI-controller have been developed. Simulation modeling of ACS was carried out using the Matlab / Simulink software package. When implementing an adaptive PI-controller, the pressure deviation downstream of the compressor stage from the required value is reduced to 0.4 %.


Author(s):  
Liu Na

The paper considers the synthesis of mathematical model of recuperation braking mode for hybrid vehicle as a complex control object. The results of computer simulation as diagrams of transients of different operating parameters of hybrid vehicle power system are obtained on the basis of developed model. The analysis of simulation results confirms the adequacy of the mathematic model of the recuperation braking mode of hybrid vehicle to real processes. The developed model can be used for synthesis of automatic control systems of the electric motors, power converters, power supplies and chargers for hybrid vehicles. Hematical and simulation models of the hybrid vehicle’s recuperation braking mode is carried out. The presented models are based on equations of physics of processes and allow to study the recuperation braking mode of the different types hybrid vehicles under various conditions and parameters values (initial linear vehicle’s speed, electrical power of generator, inclination angle and the quality of the road surface, etc.). The designed mathematical model has a rather high adequacy to the real processes, which take place in the hybrid vehicles in the recuperation braking mode, that is confirmed by the obtained simulation results in the form of graphs of transients of the main variables changes. Further research should be conducted towards the development of the functional structures, control devices as well as software and hardware for automatic control systems of the different types hybrid vehicles on the basis of the obtained mathematical and simulation models.


2012 ◽  
Vol 560-561 ◽  
pp. 1103-1113
Author(s):  
Zheng Gang Xiao ◽  
Wei Dong He ◽  
San Jiu Ying ◽  
Fu Ming Xu

To acquire better understanding of the early ignition phenomena in 100mm ignition simulator loaded with packed propellant bed, a theoretical model of ignition gas flow through rigid porous media is developed. Three pressure gauges are installed in the lateral side of ignition simulator for chamber pressure measurements after ignition. The pseupropellant loaded in the chamber is similar to the standard 13/19 single-base cylindrical propellant in size. It is composed of rigid ceramic composite with low thermo conductivity. It is assumed that the pseupropellant bed is rigid in contrast to the previous elastic porous media assumption. The calculated pressure values can be verified by the experimental data well at the low loading density of pseupropellant bed of 0.18 g/cm3. However, there is still error between the experimental and calculated results in the early pressure peak position close to the ignition primer when the loading density of pseupropellant bed increases to 0.73 and 1.06g/cm3, due to the change of local permeability of pseupropellant bed at high loading density, which is assumed a constant in the model for the modeling easily. The calculations can enable better understanding of physical processes of ignition gas flow in the ignition simulator loaded with the pseupropellant bed.


1974 ◽  
Vol 14 (01) ◽  
pp. 44-54 ◽  
Author(s):  
Gary W. Rosenwald ◽  
Don W. Green

Abstract This paper presents a mathematical modeling procedure for determining the optimum locations of procedure for determining the optimum locations of wells in an underground reservoir. It is assumed that there is a specified production-demand vs time relationship for the reservoir under study. Several possible sites for new wells are also designated. possible sites for new wells are also designated. The well optimization technique will then select, from among those wellsites available, the locations of a specified number of wells and determine the proper sequencing of flow rates from Those wells so proper sequencing of flow rates from Those wells so that the difference between the production-demand curve and the flow curve actually attained is minimized. The method uses a branch-and-bound mixed-integer program (BBMIP) in conjunction with a mathematical reservoir model. The calculation with the BBMIP is dependent upon the application of superposition to the results from the mathematical reservoir model.This technique is applied to two different types of reservoirs. In the first, it is used for locating wells in a hypothetical groundwater system, which is described by a linear mathematical model. The second application of the method is to a nonlinear problem, a gas storage reservoir. A single-phase problem, a gas storage reservoir. A single-phase gas reservoir mathematical model is used for this purpose. Because of the nonlinearity of gas flow, purpose. Because of the nonlinearity of gas flow, superposition is not strictly applicable and the technique is only approximate. Introduction For many years, members of the petroleum industry and those concerned with groundwater hydrology have been developing mathematical reservoir modeling techniques. Through multiple runs of a reservoir simulator, various production schemes or development possibilities may be evaluated and their relative merits may be considered; i.e., reservoir simulators can be used to "optimize" reservoir development and production. Formal optimization techniques offer potential savings in the time and costs of making reservoir calculations compared with the generally used trial-and-error approach and, under proper conditions, can assure that the calculations will lead to a true optimum.This work is an extension of the application of models to the optimization of reservoir development. Given a reservoir, a designated production demand for the reservoir, and a number of possible sites for wells, the problem is to determine which of those sites would be the best locations for a specified number of new wells so that the production-demand curve is met as closely as possible. Normally, fewer wells are to be drilled than there are sites available. Thus, the question is, given n possible locations, at which of those locations should n wells be drilled, where n is less than n? A second problem, that of determining the optimum relative problem, that of determining the optimum relative flow rates of present and future wells is also considered. The problem is attacked through the simultaneous use of a reservoir simulator and a mixed-integer programming technique.There have been several reported studies concerned with be use of mathematical models to select new wells in gas storage or producing fields. Generally, the approach has been to use a trial-and-error method in which different well locations are assumed. A mathematical model is applied to simulate reservoir behavior under the different postulated conditions, and then the alternatives are postulated conditions, and then the alternatives are compared. Methods that evaluate every potential site have also been considered.Henderson et al. used a trial-and-error procedure with a mathematical model to locate new wells in an existing gas storage reservoir. At the same time they searched for the operational stratagem that would yield the desired withdrawal rates. In the reservoir that they studied, they found that the best results were obtained by locating new wells in the low-deliverability parts of the reservoir, attempting to maximize the distance between wells, and turning the wells on in groups, with the low-delivery wells turned on first.Coats suggested a multiple trial method for determining well locations for a producing field. SPEJ P. 44


Author(s):  
Vitaly Vysotsky ◽  
◽  
Igor Markov ◽  
Yuri Matveev ◽  
◽  
...  

The article deals with the main trends in the development of marine automatic AC electric drive systems. A variant of the implementation of an electric drive using an electromechanical converter of a synchronous machine with electromagnetic field excitation is presented. A promising electric drive system with a valve engine for the icebreaker's with the Azipod propulsion and steering system is proposed. The aim of the work is to eliminate the structural complexity and expand the functional capabilities of the electric drive by using a scalar automatic control system of the frequency of rotation in the two-zone control of the valve motor of the EPS. The novelty lies in the use of the approach and representation of the control object-a valve motor as an analog of a DC collector motor controlled by an armature and by a field. The analysis of control processes is directly related to the processes of electromechanical energy conversion occurring in a synchronous machine.


2005 ◽  
Vol 31 (6) ◽  
pp. 481-483
Author(s):  
I. V. Alekseeva ◽  
A. P. Budnik ◽  
V. A. Zherebtsov ◽  
A. V. Zrodnikov

Author(s):  
S.M. Krivel ◽  
I.O. Bobarika

The study of the spectra of flow is carried out by experimental methods. The paper summarizes the authors’ experience in the design, construction and use of hydrodynamic installations for the visualization of liquid or gas flow using hydrogen bubbles obtained by electrolysis of water. The design of a vertical hydrodynamic pipe, the technology of making experimental models, the design and purpose of the main equipment are considered. Research methods and procedures are described. The article presents the results of the studies that make it possible to evaluate the capabilities of the experimental equipment and picture physical processes around the bodies that change the kinematic parameters of motion in the incident flow according to a given law. The proposed research methods and experimental equipment are distinguished by originality. They can be used to study the features of macrostructures around bodies of complex geometric shapes and laws of motion.


Sign in / Sign up

Export Citation Format

Share Document