scholarly journals ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С ВЕРТИКАЛЬНОЙ ОСЬЮ ВРАЩЕНИЯ

2018 ◽  
pp. 77-86
Author(s):  
Анатолий Максимович Суббота ◽  
Виталий Георгиевич Джулгаков

The questions connected with increase of efficiency of functioning of a wind power plant with a vertical axis of rotation are considered.Such plants convert the energy of the wind flow into rotational energy of the generator shaft, pump or other actuators. An overview of the design options for wind turbines of this type is presented. For vertically-axial wind power plants, in comparison with horizontally-propeller ones, it is possible to increase their efficiency by providing insensitivity to wind direction change. This is possible provided that the angular position of the blades with respect to the wind flow is continuously and purposefully changed as the wind turbine rotates. The principle of increasing the efficiency of the wind power plant is proposed due to the synchronous control of the position of the blades, depending on the direction and speed of the wind flow. The implementation of this principle is considered in detail for a four-bladed wind turbine. Depending on the direction and magnitude of the wind flow, as well as the angular velocity of rotation of the turbine, the value of the angle of the initial installation of the blades was analytically obtained, which ensures the maximum efficiency of using the wind plant. The functional scheme of the control system of the orientation of the four blades is formed. This system uses information about the current power of the generator, the rotation speed of the wind turbine, the direction and speed of the wind flow, obtained from the respective sensors. A detailed functional diagram of one channel of the control system has been constructed taking into account the initial exposure of the blade, which additionally uses information about the current angular position of the blade and the speed of its turn. Each such channel contains a proportional-differential controller or fuzzy logic controller. The proposed fuzzy controller has two inputs of linguistic variables - the angle of rotation of the blade and the speed of its rotation. As a kind of membership functions, a triangular distribution is chosen. A system of rules for adjusting the fuzzy controller has been developed. The computer simulation of the channel functioning of the control system with two types of regulators for the mode of initial setting of the blades with a change in wind direction was performed. Comparison of the quality of the control system with a proportional-differential and fuzzy controller is performed

2021 ◽  
Vol 82 (4) ◽  
pp. 51-60
Author(s):  
Taras Boyko ◽  
◽  
Mariia Ruda ◽  
Serhiy Stasevych ◽  
Olha Chaplyk ◽  
...  

The modeling of the mutual influence of the wind power plant and the ecosystem is carried out. It is proposed to consider the compartment of a complex landscape complex as an elementary structural element of the ecosystem. The wind power plant is a component of a complex landscape complex and is considered during its life cycle. The categories of environmental impact and the relative contribution of harmful factors for each category have been determined. The modeling was carried out using various scenarios of waste management, which will make it possible to reduce the negative impact of harmful factors for each category. Summary data on the impact of harmful factors on the environment were obtained, and ecological profiles were constructed using the Eco-indicator methodology. Such profiles, together with the weighting factors, allow a comprehensive presentation of environmental impacts and obtaining the values of eco-indicators that characterize the damage caused by a wind turbine to the environment. The process of synthesis of an industrial cyber-physical system is carried out by five typical steps, among which the process of ‘cyber-realization’ is to create a cyber twin and compare it with the real system. To implement this process, mathematical modeling was carried out, as a result of which a system of differential equations was obtained, the input data for which were the values of environmental impacts, expressed by the specified indicators. The resulting model will act as ideal for a real system ‘wind turbine – environment”, and will allow predicting the consequences of the harmful impact of a wind turbine on a complex landscape system and will determine the main impacts to achieve its maximum efficiency and adaptation to the requirements for environmental protection and conservation. Some results obtained using the developed model are presented.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 172
Author(s):  
Tedy Harsanto ◽  
Haryo Dwi Prananto ◽  
Esmar Budi ◽  
Hadi Nasbey

<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>


Author(s):  
Sergey Sodnomovich Dorzhiev ◽  
Elena Gennadyevna Bazarova ◽  
Konstantin Sergeevich Morenko

This chapter describes the features of the work of wind-receiving devices in the insufficient power mode when the current wind speed is below the construction value of the wind power plant. The term “effective angle” is introduced. The importance of this problem is shown and the amount of time in the insufficient power mode, for example, wind power plant, is calculated. The main characteristics of an electrical generator and a wind receiving device are considered. The importance of the mapping the characteristics of the wind-receiving device and the electrical generator is shown.


2019 ◽  
Vol 9 (21) ◽  
pp. 4695 ◽  
Author(s):  
Esmaeil Ebrahimzadeh ◽  
Frede Blaabjerg ◽  
Torsten Lund ◽  
John Godsk Nielsen ◽  
Philip Carne Kjær

It is important to develop modelling tools to predict unstable situations resulting from the interactions between the wind power plant and the weak power system. This paper presents a unified methodology to model and analyse a wind power plant connected to weak grids in the frequency-domain by considering the dynamics of the phase lock loop (PLL) and controller delays, which have been neglected in most of the previous research into modelling of wind power plants to simplify modelling. The presented approach combines both dq and positive/negative sequence domain modelling, where a single wind turbine is modelled in the dq domain but the whole wind power plant connected to the weak grid is analysed in the positive/negative sequence domain. As the proposed modelling of the wind power plant is systematic and modular and based on the decoupled positive/negative sequence impedances, the application of the proposed methodology is relevant for transmission system operators (TSOs) to assess stability easily with a very low compactional burden. In addition, as the analytical dq impedance models of the single wind turbine are provided, the proposed methodology is an optimization design tool permitting wind turbine manufacturers to tune their converter control. As a case study, a 108 MW wind power plant connected to a weak grid was used to study its sensitivity to variations in network short-circuit level, X/R ratio and line series capacitor compensation (Xc/Xg).


2019 ◽  
Vol 31 (5) ◽  
pp. 825-841 ◽  
Author(s):  
Emin Sertaç Ari ◽  
Cevriye Gencer

Several methods that have been developed to obtain energy, which is indispensable for life and whose necessity has increased geometrically in the course of time, are no longer sustainable. Therefore, human being has headed towards sustainable alternative energy sources. Wind has been one of the most interested renewable energy sources for human as of the beginning of the 20th century. This study focuses on one of the most important work items at the establishment phase of this important energy source, power plant site selection. Within the scope of linear programming perspective, two models were presented based on mixed integer linear programming. The first model provides employment of single-type wind turbine on the selected site, whereas the second model, which was developed within the current study, aims additional increase in total power output by allowing employment of multiple-type wind turbine on the selected site. The same region showed up as the most appropriate site to establish wind power plant as a result of both models of the study.


2016 ◽  
Vol 10 (8) ◽  
pp. 1123-1131 ◽  
Author(s):  
Lorenzo Zeni ◽  
Vahan Gevorgian ◽  
Robb Wallen ◽  
John Bech ◽  
Poul Ejnar Sørensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document