scholarly journals Study of Content Based Image Retrieval Using Data Mining Techniques

Author(s):  
S. Dhinakaran

<p>The field of image retrieval has been an active research area for several decades and has been paid more and more attention in recent years as a result of the dramatic and fast increase in the volume of digital images. Content-based image retrieval (CBIR) is a new but widely adopted method for finding images from vast and un annotated image databases. In recent years, a variety of techniques have been developed to improve the performance of CBIR. In reaction to the needs of users, who feel problems connected with traditional methods of image searching and indexing, researchers focus their interest on techniques for retrieving images on the basis of automatically-derived features, often denoted as Content-Based Image Retrieval (CBIR). CBIR systems index the media documents using salient features extracted from the actual media rather than by textual annotations. Query by content is nowadays a very active research field, with many systems being developed by industrial and academic teams. Results performed by these teams are really promising. The situation gets diametrically different when we move our attention from the usual CBIR task, i.e. the retrieval of images which are similar (as a whole) to the query image, to the task “find all images that contain the query image”. The proposed CBIR technique uses more than one clustering techniques to improve the performance of CBIR. This optimized method makes use of K-means and Hierarchical clustering technique to improve the execution time and performance of image retrieval systems in high dimensional sets. In this similarity measure is totally based on colors. In this paper more focus area is the way of combination of clustering technique in order to get faster output of images. In this paper the clustering techniques are discussed and analyzed. Also, we propose a method HDK that uses more than one clustering technique to improve the performance of CBIR. This method makes use of hierarchical and divides and conquers K-means clustering technique with equivalency and compatible relation concepts to improve the performance of the K-Means for using in high dimensional datasets. It also introduced the feature like color, texture and shape for accurate and effective retrieval system.</p>

2021 ◽  
Vol 8 (7) ◽  
pp. 97-105
Author(s):  
Ali Ahmed ◽  
◽  
Sara Mohamed ◽  

Content-Based Image Retrieval (CBIR) systems retrieve images from the image repository or database in which they are visually similar to the query image. CBIR plays an important role in various fields such as medical diagnosis, crime prevention, web-based searching, and architecture. CBIR consists mainly of two stages: The first is the extraction of features and the second is the matching of similarities. There are several ways to improve the efficiency and performance of CBIR, such as segmentation, relevance feedback, expansion of queries, and fusion-based methods. The literature has suggested several methods for combining and fusing various image descriptors. In general, fusion strategies are typically divided into two groups, namely early and late fusion strategies. Early fusion is the combination of image features from more than one descriptor into a single vector before the similarity computation, while late fusion refers either to the combination of outputs produced by various retrieval systems or to the combination of different rankings of similarity. In this study, a group of color and texture features is proposed to be used for both methods of fusion strategies. Firstly, an early combination of eighteen color features and twelve texture features are combined into a single vector representation and secondly, the late fusion of three of the most common distance measures are used in the late fusion stage. Our experimental results on two common image datasets show that our proposed method has good performance retrieval results compared to the traditional way of using single features descriptor and also has an acceptable retrieval performance compared to some of the state-of-the-art methods. The overall accuracy of our proposed method is 60.6% and 39.07% for Corel-1K and GHIM-10K ‎datasets, respectively.


Author(s):  
David García Pérez ◽  
Antonio Mosquera ◽  
Stefano Berretti ◽  
Alberto Del Bimbo

Content-based image retrieval has been an active research area in past years. Many different solutions have been proposed to improve performance of retrieval, but the large part of these works have focused on sub-parts of the retrieval problem, providing targeted solutions only for individual aspects (i.e., feature extraction, similarity measures, indexing, etc). In this chapter, we first shortly review some of the main practiced solutions for content-based image retrieval evidencing some of the main issues. Then, we propose an original approach for the extraction of relevant image objects and their matching for retrieval applications, and present a complete image retrieval system which uses this approach (including similarity measures and image indexing). In particular, image objects are represented by a two-dimensional deformable structure, referred to as “active net.” Active net is capable of adapting to relevant image regions according to chromatic and edge information. Extension of the active nets has been defined, which permits the nets to break themselves, thus increasing their capability to adapt to objects with complex topological structure. The resulting representation allows a joint description of color, shape, and structural information of extracted objects. A similarity measure between active nets has also been defined and used to combine the retrieval with an efficient indexing structure. The proposed system has been experimented on two large and publicly available objects databases, namely, the ETH-80 and the ALOI.


2019 ◽  
Vol 53 (1-2) ◽  
pp. 3-17
Author(s):  
A Anandh ◽  
K Mala ◽  
R Suresh Babu

Nowadays, user expects image retrieval systems using a large database as an active research area for the investigators. Generally, content-based image retrieval system retrieves the images based on the low-level features, high-level features, or the combination of both. Content-based image retrieval results can be improved by considering various features like directionality, contrast, coarseness, busyness, local binary pattern, and local tetra pattern with modified binary wavelet transform. In this research work, appropriate features are identified, applied and results are validated against existing systems. Modified binary wavelet transform is a modified form of binary wavelet transform and this methodology produced more similar retrieval images. The proposed system also combines the interactive feedback to retrieve the user expected results by addressing the issues of semantic gap. The quantitative evaluations such as average retrieval rate, false image acceptation ratio, and false image rejection ratio are evaluated to ensure the user expected results of the system. In addition to that, precision and recall are evaluated from the proposed system against the existing system results. When compared with the existing content-based image retrieval methods, the proposed approach provides better retrieval accuracy.


Data Mining ◽  
2013 ◽  
pp. 1097-1113
Author(s):  
Jianhua Yao ◽  
Ronald M. Summers

The growing repositories of clinical imaging data generate a need for effective image management and access that demands more than simple text-based queries. Content-Based Image Retrieval (CBIR) is an active research field and has drawn attention in recent years. It is a technique to organize and search image archives by their visual content. It is a multi-discipline field that integrates technologies from computer vision, machine learning, information retrieval, human-machine interaction, database systems, and data mining. CBIR consists of four main components: database and indexing, feature extraction, query formation and interface, and similarity measures. The applications of CBIR to the medical field include PACS integration, image annotation/codification, computer-aided diagnosis, case-based reasoning, and teaching tools. This chapter intends to disseminate the CBIR techniques to their applications to medical image management and analysis and to attract greater interest from various research communities to advance research in this field.


Author(s):  
SAVITHA SIVAN ◽  
THUSNAVIS BELLA MARY. I

Content-based image retrieval (CBIR) is an active research area with the development of multimedia technologies and has become a source of exact and fast retrieval. The aim of CBIR is to search and retrieve images from a large database and find out the best match for the given query. Accuracy and efficiency for high dimensional datasets with enormous number of samples is a challenging arena. In this paper, Content Based Image Retrieval using various features such as color, shape, texture is made and a comparison is made among them. The performance of the retrieval system is evaluated depending upon the features extracted from an image. The performance was evaluated using precision and recall rates. Haralick texture features were analyzed at 0 o, 45 o, 90 o, 180 o using gray level co-occurrence matrix. Color feature extraction was done using color moments. Structured features and multiple feature fusion are two main technologies to ensure the retrieval accuracy in the system. GIST is considered as one of the main structured features. It was experimentally observed that combination of these techniques yielded superior performance than individual features. The results for the most efficient combination of techniques have also been presented and optimized for each class of query.


Author(s):  
Jianhua Yao ◽  
Ronald M. Summers

The growing repositories of clinical imaging data generate a need for effective image management and access that demands more than simple text-based queries. Content-Based Image Retrieval (CBIR) is an active research field and has drawn attention in recent years. It is a technique to organize and search image archives by their visual content. It is a multi-discipline field that integrates technologies from computer vision, machine learning, information retrieval, human-machine interaction, database systems, and data mining. CBIR consists of four main components: database and indexing, feature extraction, query formation and interface, and similarity measures. The applications of CBIR to the medical field include PACS integration, image annotation/codification, computer-aided diagnosis, case-based reasoning, and teaching tools. This chapter intends to disseminate the CBIR techniques to their applications to medical image management and analysis and to attract greater interest from various research communities to advance research in this field.


Author(s):  
Kratika Arora ◽  
Ashwani Kumar Aggarwal

With an ever-increasing use and demand for digital imagery in the areas of medicine, sciences, and engineering, image retrieval is an active research area in image processing and pattern recognition. Content-based image retrieval (CBIR) is a method of finding images from a huge image database according to persons' interests. Content-based here means that the search involves analysis of the actual content present in the image. As the database of images is growing day by day, researchers/scholars are searching for better techniques for retrieval of images with good efficiency.This chapter first gives an overview of the various image retrieval systems. Then, the applications of CBIR in various fields and existing CBIR systems are described. The various image content descriptors and extraction methods are also explained. The main motive of the chapter is to study and compare the features that are used in Content Based Image Retrieval system and conclude on the system that retrieves images from a huge database with good precision and recall.


Author(s):  
Gangavarapu Venkata Satya Kumar ◽  
Pillutla Gopala Krishna Mohan

In diverse computer applications, the analysis of image content plays a key role. This image content might be either textual (like text appearing in the images) or visual (like shape, color, texture). These two image contents consist of image’s basic features and therefore turn out to be as the major advantage for any of the implementation. Many of the art models are based on the visual search or annotated text for Content-Based Image Retrieval (CBIR) models. There is more demand toward multitasking, a new method needs to be introduced with the combination of both textual and visual features. This paper plans to develop the intelligent CBIR system for the collection of different benchmark texture datasets. Here, a new descriptor named Information Oriented Angle-based Local Tri-directional Weber Patterns (IOA-LTriWPs) is adopted. The pattern is operated not only based on tri-direction and eight neighborhood pixels but also based on four angles [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Once the patterns concerning tri-direction, eight neighborhood pixels, and four angles are taken, the best patterns are selected based on maximum mutual information. Moreover, the histogram computation of the patterns provides the final feature vector, from which the new weighted feature extraction is performed. As a new contribution, the novel weight function is optimized by the Improved MVO on random basis (IMVO-RB), in such a way that the precision and recall of the retrieved image is high. Further, the proposed model has used the logarithmic similarity called Mean Square Logarithmic Error (MSLE) between the features of the query image and trained images for retrieving the concerned images. The analyses on diverse texture image datasets have validated the accuracy and efficiency of the developed pattern over existing.


Author(s):  
Siddhivinayak Kulkarni

Developments in technology and the Internet have led to an increase in number of digital images and videos. Thousands of images are added to WWW every day. Content based Image Retrieval (CBIR) system typically consists of a query example image, given by the user as an input, from which low-level image features are extracted. These low level image features are used to find images in the database which are most similar to the query image and ranked according their similarity. This chapter evaluates various CBIR techniques based on fuzzy logic and neural networks and proposes a novel fuzzy approach to classify the colour images based on their content, to pose a query in terms of natural language and fuse the queries based on neural networks for fast and efficient retrieval. A number of experiments were conducted for classification, and retrieval of images on sets of images and promising results were obtained.


Author(s):  
Stylianos Asteriadis ◽  
Stylianos Asteriadis ◽  
Nikos Nikolaidis ◽  
Nikos Nikolaidis ◽  
Ioannis Pitas ◽  
...  

Facial feature localization is an important task in numerous applications of face image analysis that include face recognition and verification, facial expression recognition, driver‘s alertness estimation, head pose estimation etc. Thus, the area has been a very active research field for many years and a multitude of methods appear in the literature. Depending on the targeted application, the proposed methods have different characteristics and are designed to perform in different setups. Thus, a method of general applicability seems to be away from the current state of the art. This chapter intends to offer an up-to-date literature review of facial feature detection algorithms. A review of the image databases and performance metrics that are used to benchmark these algorithms is also provided.


Sign in / Sign up

Export Citation Format

Share Document