scholarly journals Statistical Analysis of Seasonal Rainfall Variability and Characteristics in Ahmednagar District of Maharashtra, India

Author(s):  
Gadekar Deepak Janardhan ◽  
Soniya Sonkar

The three major characteristics of rainfall are mainly its amount, frequency and intensity. The value of rainfall varies greatly from day to day, place to place, month and year to year. Generally Akole tehsil receives the highest rainfall and Karjat and Jamkhed tehsils receives the least rainfall. The main reason for the highest rainfall in Akole tehsil is orographic type rainfall. The rainfall characteristics and distribution in drought prone area in study area. The research covers rainfall data from 1981 to 2014 and the rainfall data is taken from the statistical department website of Ahmednagar district.

MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 463-474
Author(s):  
Y. WANG ◽  
Z. W. SHILENJE ◽  
P. O. SAGERO ◽  
A. M. NYONGESA ◽  
N. BANDA

 Basic rainfall characteristics and drought over the Horn of Africa (HoA) is investigated, from 1901 to 2010. Standard Precipitation Index (SPI) is used to study drought variability, mainly focusing on 3-month SPI. The dominant mode of variability of seasonal rainfall was analyzed by performing Empirical orthogonal functions (EOF) analysis. Gridded data is sourced from Climate Research Unit (CRU), spanning from 1901 to 2010. The HoA experiences predominantly bimodal rainfall distribution in time; March to May (MAM) and October to December (OND). The spatial component of the first eigenvector (EOF1) shows that the MAM and OND seasonal rainfalls are dominated by negative and positive loadings, respectively. The EOF1 explain 34.5% and 58.9% variance of MAM and OND seasonal rainfall, respectively. The EOF2, 3 and 4 are predominantly positive, explaining less than 25% in total of the seasonal rainfall variance in the two seasons. The last two decades experienced the highest negative anomaly, with OND seasonal rainfall showing higher anomalies as compared to MAM season. The OND season recorded 9% more drought events as compared to MAM season. The frequency of occurrence of moderate, severe and extreme dryness was almost the same in the two seasons. These results give a good basis for regional model validation, as well as mapping out drought hotspots and projections studies in the HoA.


2017 ◽  
Vol 56 (4) ◽  
pp. 937-952 ◽  
Author(s):  
XiaoJuan Yang ◽  
Yuan Liu ◽  
Wei Bai ◽  
BuChun Liu

AbstractDrought is a typical disaster in the main soybean production area of northeast China. The spatiotemporal variations of drought related to soybean production based on a crop water deficit index (CWDI) and sensitivity to meteorological variables were investigated in northeast China using daily meteorological data from 87 weather stations from 1981 to 2010. Statistical analysis revealed that precipitation could not meet the water demands of soybeans during the seedling–branching, filling, and maturing stages, and excessive drought occurred more often in northeast China. The Mann–Kendall test indicated that the soybean CWDI significantly increased during the filling stage. Kriging spatial analysis showed that the most drought-prone area was located in the west of northeast China. Explanations for the spatiotemporal variations of the drought for soybean production were explored in terms of meteorological variables. Statistical analysis showed that the crop evapotranspiration, air temperature, wind speed, and number of sunshine hours were significantly higher and the precipitation and relative humidity were significantly lower in the drought-prone area than in the dry area less prone to droughts. An explored method of sensitive analysis quantitatively revealed that precipitation and humidity negatively affected the CWDI, whereas temperature, wind speed, and number of sunshine hours positively affected the CWDI. The CWDI was most sensitive to precipitation. These results not only provide valuable information for soybean planning and management but also produce important background and physical evidence for the influence of climate on the drought related to soybean production in northeast China.


2021 ◽  
Vol 1 (2) ◽  
pp. 123-135
Author(s):  
Abdullahi Umar ◽  
Saadu Umar Wali ◽  
Ibrahim Mustapha Dankani

Wavelet transform has been underutilized in characterization of rainfall (Real Onset Dates and Real Cessation Dates) in the study area. This study aims at the characterization of monsoonal rainfall. Daily rainfall data of four stations for the period 1981-2018 were collected from Nigerian Meteorological Agency. The Intra-seasonal Rainfall Monitoring Index (IRMI) was generated and used in determining the RODs and RCDs. The Mann–Kendall test was used to detect trends of the rainfall characteristics. Wavelet transform was used in modelling RODs and RCDs. Findings revealed that RODs vary between stations. There is low (0.3 Spearman’s Rank r) correlation between latitudes and Early Cessations (ECs) of rains. The Morlet wavelet analysis revealed that from 1999 to 2018, there were more of EOs and NOs especially in Kano station. We conclude that from 1981 to 2018 there has been a minimal increase in the retreat dates of rainfall in the study area.


MAUSAM ◽  
2021 ◽  
Vol 61 (4) ◽  
pp. 487-498
Author(s):  
AVIK GHOSH DASTIDAR ◽  
SARBARI GHOSH ◽  
U. K. DE ◽  
S. K. GHOSH

Seasonal, monthly and daily rainfall characteristics of meteorological sub-divisions of Sub Himalayan West Bengal (SHWB) and Gangetic West Bengal (GWB) have been studied using rainfall data of 23 stations of India Meteorological Department (IMD) over the state of West Bengal. The two subdivisions have distinctive characteristics, though two stations lying in the plain region of SHWB have behaviour more alike the stations of GWB.  Krishnagar is a station with least seasonal rainfall in the entire state. Kurtosis and Skewness of the seasonal rainfall distribution have been studied and found that, for most of the stations they lie within reasonable limits. From the time series analysis, it is found that the seasonal rainfall has no trend.     


Agromet ◽  
2006 ◽  
Vol 20 (2) ◽  
pp. 38
Author(s):  
I. Yasin ◽  
M. Ma'shum

<p>Variability of inter-anuual rainfall has great impact on agricultural production. The inter-annual rainfall variability mainly causes cropping and harvest failure in rainfed land due to drought and flood. Although the onset of season is usully known, the characteristic of in coming rainfall is usually not predictable. Thus the understanding of the cause of rainfall variability may lead to establishment of new system to forecast seasonal rainfall characteristics. The aims of this research are to study water availibity for dry direct seeding rice by considering water balance in southern Lombok and understanding the relationship between ENSO phenomena with rain event in Lombok as well using SOI for predicting seasonal rainfall events. The results of this research showed that average rainfall in southern Lombok is 1450 mm with 950 mm the lowest and 2460 the highest. Southern Lombok has three water surplus months (with rainfall >200 mm), and 5 to 6 water deficit months (with less than 100 mm rainfall).. Inter annual rainfall variation is closely correlated to ENSO phenomena where the rainfall tend to be obove normal in La Niña years and below normal in El Niño years. The short term wet months and wide range of rainfall varibility lead to the need to establishment of water storage system and the application of water and cropping management which suitable to rainfall characteristics and local environmental conditions. The use of ENSO and SOI value to forecast seasonal rain events may be suitable and may reduce the risks of cropping system in rainfed agricultural land.</p>


2021 ◽  
Vol 889 (1) ◽  
pp. 012024
Author(s):  
Kaamun ◽  
Sahil Arora

Abstract The following research focuses on Chandigarh’s annual rainfall of past 50 years i.e. from 1968 to 2017. Parameters like Kurtosis, Variance, Goodness of Fit, Mann-Kendall’s Test were performed along with total annual forecast as well as seasonal forecast was predicted. Seasonal rend was also studied so as to study in detail about the past, present, and future of rainfall in Chandigarh. This study was performed with the help of MS-Excel and ExcelStat. A rising trend was found in Chandigarh for total as well as seasonal rainfall with a maximum rainfall of 1510.9 mm in the year of 1996 and a minimum of 371.1 mm in year 1987, other than this Sen.’s slope was 6.431 whereas skewness was found to be 0.6018.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jaber Almedeij

This study examines the spatial and temporal variability of monthly total rainfall data obtained from weather stations located in the urban areas of Kuwait. The rainfall data are analyzed by considering statistics on a seasonal basis and by means of periodogram technique to reveal the periods responsible for the variable pattern. The results demonstrate similarity implying that a point estimate of rainfall data can be considered spatially representative over the urban areas of Kuwait. A sinusoidal model triggering the influence of the detected periods is developed accordingly for the time duration from January 1965 to December 2009. The model is capable of describing the rainfall data with some discrepancies between the actual and calculated values resulting from hidden periods that have not been taken into account. This finding suggests that the ability to construct a more reliable model would require a wider range of historical data to detect the other periods affecting the rainfall pattern.


Sign in / Sign up

Export Citation Format

Share Document