scholarly journals DAMPAK VARIABILITAS IKLIM MUSIMAN PADA PRODUKSI PADI SAWAH TADAH HUJAN DI PULAU LOMBOK (IMPACT OF INTERANNUAL CLIMATE VARIABILITY ON RAINFED PADDY PRODUCTION IN LOMBOK ISLAND)

Agromet ◽  
2006 ◽  
Vol 20 (2) ◽  
pp. 38
Author(s):  
I. Yasin ◽  
M. Ma'shum

<p>Variability of inter-anuual rainfall has great impact on agricultural production. The inter-annual rainfall variability mainly causes cropping and harvest failure in rainfed land due to drought and flood. Although the onset of season is usully known, the characteristic of in coming rainfall is usually not predictable. Thus the understanding of the cause of rainfall variability may lead to establishment of new system to forecast seasonal rainfall characteristics. The aims of this research are to study water availibity for dry direct seeding rice by considering water balance in southern Lombok and understanding the relationship between ENSO phenomena with rain event in Lombok as well using SOI for predicting seasonal rainfall events. The results of this research showed that average rainfall in southern Lombok is 1450 mm with 950 mm the lowest and 2460 the highest. Southern Lombok has three water surplus months (with rainfall >200 mm), and 5 to 6 water deficit months (with less than 100 mm rainfall).. Inter annual rainfall variation is closely correlated to ENSO phenomena where the rainfall tend to be obove normal in La Niña years and below normal in El Niño years. The short term wet months and wide range of rainfall varibility lead to the need to establishment of water storage system and the application of water and cropping management which suitable to rainfall characteristics and local environmental conditions. The use of ENSO and SOI value to forecast seasonal rain events may be suitable and may reduce the risks of cropping system in rainfed agricultural land.</p>

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2055 ◽  
Author(s):  
Sekela Twisa ◽  
Manfred F. Buchroithner

In some parts of Africa, rainfall variability has resulted in widespread droughts and floods, thus posing a substantial challenge to water availability in rural areas, especially drinking water. Therefore, due to increasing water demands, increases in the population, and economic development, water supply systems are under constant stress. One of the critical uncertainties surrounding the effects of rainfall variability in Africa is the significant impact that it imposes on rural water supply services. The present study analyzes the trends in annual and seasonal rainfall time series in the Wami River Basin to see if there have been any significant changes in the patterns during the period 1983–2017 and how they affect the access to water supply services in rural areas. The study analyzes the trends of rainfall series of three stations using simple regression, Mann–Kendal Test and Sen’s Slope Estimator. The water point mapping datasets were analyzed considering seasonal variation. The analysis showed a statistically significant positive trend in annual rainfall at Kongwa and March–April–May (MAM) seasonal rainfall at Dakawa. The maximum increase in annual rainfall occurred at Kongwa (5.3 mm year−1) and for MAM seasonal data at Dakawa (4.1 mm year−1). Water points were found to be significantly affected by seasonal changes, both in terms of availability and quality of water. There also exists a strong relationship between rural water services and seasons.


Author(s):  
Dr. Vasudev S. Salunke ◽  
Pramila. P. Zaware

Rainfall is one of the vital form of precipitation which affects not only agricultural activity but also entire ecology in any region. Hence rainfall distribution and its trends in district is important to understand water availability and to take decisions for the agricultural activities in area. This research paper is an effort to assess the spatial and temporal rainfall variability of Ahmednagar district of Maharashtra State. Ahmednagar is popularly known as the largest district of Maharashtra with fourteen Talukas. The average annual rainfall of this district is 621 mm with an average of 46 rainy days. In this study the spatial and temporal rainfall distribution of this district is taken in to account. Short-term annual rainfall data are considered from 1998 to 2014. The daily rainfalls of monsoon months of all the fourteen Taluka are analyzed for the year 2015.It was found that spatial and temporal variability is high in the District.


MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 463-474
Author(s):  
Y. WANG ◽  
Z. W. SHILENJE ◽  
P. O. SAGERO ◽  
A. M. NYONGESA ◽  
N. BANDA

 Basic rainfall characteristics and drought over the Horn of Africa (HoA) is investigated, from 1901 to 2010. Standard Precipitation Index (SPI) is used to study drought variability, mainly focusing on 3-month SPI. The dominant mode of variability of seasonal rainfall was analyzed by performing Empirical orthogonal functions (EOF) analysis. Gridded data is sourced from Climate Research Unit (CRU), spanning from 1901 to 2010. The HoA experiences predominantly bimodal rainfall distribution in time; March to May (MAM) and October to December (OND). The spatial component of the first eigenvector (EOF1) shows that the MAM and OND seasonal rainfalls are dominated by negative and positive loadings, respectively. The EOF1 explain 34.5% and 58.9% variance of MAM and OND seasonal rainfall, respectively. The EOF2, 3 and 4 are predominantly positive, explaining less than 25% in total of the seasonal rainfall variance in the two seasons. The last two decades experienced the highest negative anomaly, with OND seasonal rainfall showing higher anomalies as compared to MAM season. The OND season recorded 9% more drought events as compared to MAM season. The frequency of occurrence of moderate, severe and extreme dryness was almost the same in the two seasons. These results give a good basis for regional model validation, as well as mapping out drought hotspots and projections studies in the HoA.


Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 326 ◽  
Author(s):  
Mohammed Gedefaw ◽  
Denghua Yan ◽  
Hao Wang ◽  
Tianling Qin ◽  
Abel Girma ◽  
...  

This study investigated the annual and seasonal rainfall variability at five selected stations of Amhara Regional State, by using the innovative trend analysis method (ITAM), Mann-Kendall (MK) and Sen’s slope estimator test. The result showed that the trend of annual rainfall was increasing in Gondar (Z = 1.69), Motta (Z = 0.93), and Bahir Dar (Z = 0.07) stations. However, the trends in Dangla (Z = −0.37) and Adet (Z = −0.32) stations showed a decreasing trend. As far as monthly and seasonal variability of rainfall are concerned, all the stations exhibited sensitivity of change. The trend of rainfall in May, June, July, August, and September was increasing. However, the trend on the rest of other months showed a decreasing trend. The increase in rainfall during Kiremt season, along with the decrease in number of rainy days, leads to an increase of extreme rainfall events over the region during 1980–2016. The consistency in rainfall trends over the study region confirms the robustness of the change in trends. Innovative trend analysis method is very crucial method for detecting the trends in rainfall time series data due to its potential to present the results in graphical format as well. The findings of this paper could help researchers to understand the annual and seasonal variability of rainfall over the study region and become a foundation for further studies.


MAUSAM ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 285-290
Author(s):  
DAKHORE K K ◽  
KADAM Y E ◽  
KUMAR P VIJAYA

The weekly rainfall data for 36 years (1981-2016) recorded at Vasantrao Naik Marathwada  Krishi Vidyapeeth, Parbhani were analyzed for mean seasonal, weekly rainfall and also weekly rainfall probabilities. The mean seasonal rainfall was 796 mm, received in 38 rainy days. The seasonal rainfall indicated that there is 53% chance of receiving less than 700 mm with variable intensities and 36% chance of getting more than normal rainfall and 11% chance of seasonal rainfall, in between 700 mm to 800 mm. The mean weekly rainfall during crop season was 45.8 mm with a CV of 116%. Highest mean weekly rainfall was recorded 71.8 mm with SD (95.3) and CV (132.7%) in 30th MW. Sowing of Kharif crops should be undertaken during 24th MW to 27th MW. Significant and positive correlation between yield and rainfall was observed for Soybean, Pigeonpea, Black gram, Green gram and rice. The predictability of productivity of crops using seasonal rainfall is 10-20% variation in productivity for all the crops at the Centre. The El Nino episode was negatively influencing Southwest monsoon and annual rainfall as well as rainfall during the months of July and September. El Nino episodes exhibit more negative influence on productivity of all the crops except rice crop. Among the different categories of El Nino, weak events exerted more negative impact on productivity of short duration crops (i.e., sorghum, soybean and Black gram)  as compared to moderate and strong El Nino events.


Author(s):  
Gadekar Deepak Janardhan ◽  
Soniya Sonkar

The three major characteristics of rainfall are mainly its amount, frequency and intensity. The value of rainfall varies greatly from day to day, place to place, month and year to year. Generally Akole tehsil receives the highest rainfall and Karjat and Jamkhed tehsils receives the least rainfall. The main reason for the highest rainfall in Akole tehsil is orographic type rainfall. The rainfall characteristics and distribution in drought prone area in study area. The research covers rainfall data from 1981 to 2014 and the rainfall data is taken from the statistical department website of Ahmednagar district.


2019 ◽  
Vol 11 (22) ◽  
pp. 2688 ◽  
Author(s):  
Ashebir Sewale Belay ◽  
Ayele Almaw Fenta ◽  
Alemu Yenehun ◽  
Fenta Nigate ◽  
Seifu A. Tilahun ◽  
...  

The spatio-temporal characteristic of rainfall in the Beles Basin of Ethiopia is poorly understood, mainly due to lack of data. With recent advances in remote sensing, satellite derived rainfall products have become alternative sources of rainfall data for such poorly gauged areas. The objectives of this study were: (i) to evaluate a multi-source rainfall product (Climate Hazards Group Infrared Precipitation with Stations: CHIRPS) for the Beles Basin using gauge measurements and (ii) to assess the spatial and temporal variability of rainfall across the basin using validated CHIRPS data for the period 1981–2017. Categorical and continuous validation statistics were used to evaluate the performance, and time-space variability of rainfall was analyzed using GIS operations and statistical methods. Results showed a slight overestimation of rainfall occurrence by CHIRPS for the lowland region and underestimation for the highland region. CHIRPS underestimated the proportion of light daily rainfall events and overestimated the proportion of high intensity daily rainfall events. CHIRPS rainfall amount estimates were better in highland regions than in lowland regions, and became more accurate as the duration of the integration time increases from days to months. The annual spatio-temporal analysis result using CHIRPS revealed: a mean annual rainfall of the basin is 1490 mm (1050–2090 mm), a 50 mm increase of mean annual rainfall per 100 m elevation rise, periodical and persistent drought occurrence every 8 to 10 years, a significant increasing trend of rainfall (~5 mm year−1), high rainfall variability observed at the lowland and drier parts of the basin and high coefficient of variation of monthly rainfall in March and April (revealing occurrence of bimodal rainfall characteristics). This study shows that the performance of CHIRPS product can vary spatially within a small basin level, and CHIRPS can help for better decision making in poorly gauged areas by giving an option to understand the space-time variability of rainfall characteristics.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Getachew Bayable ◽  
Gedamu Amare ◽  
Getnet Alemu ◽  
Temesgen Gashaw

Abstract Background Rainfall variability exceedingly affects agriculture in Ethiopia, particularly in the eastern region where rainfall is relatively scarce. Hence, understanding the spatiotemporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatiotemporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia. Method The coefficient of variation (CV) and standardized anomaly index (SAI) were used to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by Pearson correlation coefficient (r). Results The annual rainfall CV during 1983–2019 periods is between 12 and 19.36% while the seasonal rainfall CV extends from 15–28.49%, 24–35.58%, and 38–75.9% for average Kiremt (June–September), Belg (February–May), and Bega (October–January) seasons, respectively (1983–2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends were not statistically significant (α = 0.05), unlike in November. On a seasonal basis, the trends of mean Kiremt and Belg seasons rainfall decreased while it increased in Bega season although it is not statistically significant. Moreover, the annual rainfall showed a non-significant decreasing trend. The findings also revealed that the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, annual rainfall and Pacific Ocean SST was negatively correlated. Conclusions High spatial and temporal rainfall variability was observed at the monthly, seasonal, and annual time scales. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall decreased in the annual, Belg and Kiremt season while increased in the Bega season. The study also indicated that the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.


2018 ◽  
Vol 10 (4) ◽  
pp. 799-817 ◽  
Author(s):  
Tesfa Worku ◽  
Deepak Khare ◽  
S. K. Tripathi

Abstract Global warming is a significant global environmental problem in the 21st century. The problem is high in developing countries, particularly sub-Saharan countries in which the majority of the population live on rainfed agriculture. The present study aimed to undertake spatiotemporal analysis of seasonal and annual rainfall and temperature and its implications. The MK test, Sen's slope and precipitation concentration index (PCI) were applied. Finally, Pearson correlation analysis between climatic variables and crop production was analysed. The Mann–Kendall test results showed that the annual and seasonal rainfall trend was highly variable. The minimum and maximum temperatures have increased by 0.8 and 1.1 °C/year, respectively. Based on PCI results, rainfall during the summer and spring seasons is moderately distributed as compared to annual and winter season rainfall. Based on these observations, the rainfall pattern and distribution of the area could be classified as irregular and erratic distribution. Results of correlation analysis between monthly and seasonal rainfall with crop production were insufficient to conclude the impact of rainfall and temperature on crop production. In view of this, the incidence of food shortage is a common occurrence. Therefore, depending on the historical trend of rainfall variability and prolonged temperature increase, appropriate coping and adaptation strategies need to be encouraged.


2017 ◽  
Author(s):  
Mandy Freund ◽  
Benjamin J. Henley ◽  
David J. Karoly ◽  
Kathryn J. Allen ◽  
Patrick J. Baker

Abstract. Australian seasonal rainfall is strongly influenced by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these large-scale precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (Apr–Sep) and warm (Oct–Mar) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our sub-annual rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a sub-annual temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30-year and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool season drying trends in parts of southern Australia are also very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium drought (1997–2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation drought [1895–1903], World War II drought [1939–1945], and the Millennium drought [1997–2005]), we find that the historically documented Settlement drought [1790–1793], Sturt drought [1809–1830] and the Goyder Line drought [1861–1866] actually had more regionalised patterns and reduced spatial extents. This seasonal rainfall reconstruction provides a new opportunity to understand Australian rainfall variability, by contextualising severe droughts and recent trends in Australia.


Sign in / Sign up

Export Citation Format

Share Document