scholarly journals Characteristic of Shallow Subsurface Quaternary Sediment in Nongsa Isle, Part of Putri Islands, Batam, Based on Georadar Data Interpretation

2019 ◽  
Vol 34 (2) ◽  
Author(s):  
Undang Hernawan ◽  
Nineu Yayu Geurhaneu ◽  
Muhammad Zulfikar

Nongsa Isle belongs to Putri Islands in Batam, is the outermost island that need to be protected either from natural hazards and anthropogenic factor. Therefore, this study was conducted by performing Ground Penetrating Radar analysis, in order to understand the geological condition particularly sedimentology and its process. We used Sirveyor 20 GPR equipment type with MLF antenna frequency 40 Mhz and Radan 5 as processing software, which include time zero correction, spatial filter, deconvolution, migration and adjustment of amplitude and signal gain. Data interpretation was conducted based on radar facies methodology that describes georadar image/radargram. The study result showed differences of sedimentary facies based on three differences of radar facies units, with the first layer (unit 1) is the youngest unit has thicknesses ranging from 3.5 – 5 m that characterized by parallel, strong reflector, high amplitude and continuous reflector configurations, unit 2 from 5 – 11 meter of depth, indicates parallel reflector pattern with medium-high amplitude and continuous, and unit 3 which is the oldest unit with thickness until penetration limit (11 – 20 m), characterized by a configuration of sub parallel – hummocky reflectors that are undulating, low-medium amplitude reflectors. Based on radar facies characteristics such as reflector configuration, reflection amplitude, and reflection continuity, the differencies of depositional facies are changes from fluvial – coastal plain.

2007 ◽  
Vol 86 (1) ◽  
pp. 55-61 ◽  
Author(s):  
M.A.J. Bakker ◽  
D. Maljers ◽  
H.J.T. Weerts

AbstractManagement of the Dutch embanked floodplains is of crucial interest in the light of a likely increase of extreme floods. One of the issues is a gradual decrease of floodwater accommodation space as a result of overbank deposition of mud and sand during floods. To address this issue, sediment deposits of an undisturbed embanked floodplain near Winssen along the river Waal were studied using ground-penetrating radar (GPR). A number of radar facies units were recognized. Boreholes were used to relate radar facies units to sedimentary facies and to determine radar velocity. The GPR groundwave is affected by differences in moisture and texture of the top layer and probably interferes with the first subsurface reflector. The architectural elements recognized in the GPR transects confirm earlier reported insights on human-influenced river behaviour. This is testified in the development of sand bars during flood regimes that are probably more widespread than previously established.


2016 ◽  
Vol 29 (2) ◽  
pp. 61
Author(s):  
Yogi Noviadi

In order to know the subsurface lithology characteristic at Temaju coast, the Ground Probing Radar (GPR) detection have been carried out. The detection was done along the coast around 11 GPR track line. The equipment which was used are SIR III with 270 MHz antenna. Based on the analysis results of GPR image data which were correlated with the exposed of surface lithology and core drilling log, show that the maximum penetration is about 10 m with the lithology composition as follow: the upper most layer is characterized by sand deposits with about 2 – 3 m width. Below the sand layer is characterized by coral limestone and sandstone. Keywords: subsurface lithology, ground penetrating radar, Temaju Coast Untuk mengetahui karakteristik litologi bawah permukaan di sekitar pantai Temaju, telah dilakukan penditeksian dengan mempergunakan metoda Ground Probing Radar (GPR). Penditeksian telah dilakukan pada sekitar 11 panjang lintasan di sepanjang pantai. Peralatan yang dipergunakan terdiri dari SIR III dengan antenna 270 MHz. Berdasarkan hasil analisis data citra GPR yang dikorelasikan dengan singkapan litologi permukaan dan log pemboran inti, memperlihatkan bahwa penetrasi masimum sekitar 10 m dengan urutan litologi sebagai berikut: lapisan paling atas dicirikan oleh pasir dengan ketebalan sekitar 2-3m. Di bawah lapisan pasir dicirikan oleh batuan gamping terumbu karang dan batu pasir Kata kunci: litologi bawah permukaan, “Ground Probing Radar”, Pantai Temaju


2016 ◽  
Vol 28 (1) ◽  
pp. 31
Author(s):  
Kris Budiono

Subsurface Tertiary to Quaternary deposits from coast of Subi Kecil Island, Natuna Distric, Riau Archipelago Province, were imaged with Ground Penetrating Radar (GPR). The GPR survey was carried out by using GSSI Surveyor III/20 with 270 MHz and 40 MHz of 3200 MLF antennas. GPR data were processed using software GSSI’s RADAN for Windows NT™. The interpretation were done by using the radar facies as a groups of radar reflections. The GPR images of study area can be recoqnized in to several facies such as parallel, sub parallel, chaotic, oblique, mound and reflection-free. The calibration were done with geological data along the coast (cliff and outcrop). Unit A is the uppermost layer which is characterized by continous to non continous pararel reflection, srong reflector and high amplitude and is interpreted as alluvium deposits. Below the unit A is unit B which is characterized by non continous sub parallel, chaotic and mound reflector, strong reflector and high amplitude. Unit C and D (Mio-Oligocene) are overlain by unit A and B include chaotic, reflection-free and, locally, discontinuous parallel, oblique mound reflector radar facies, correlatable at the cliff face to massive sands, mostly representing near coastal deposits. These units are bounded by continuous, high amplitude reflections that can be easily correlatable throughout the GPR profiles, serving as important stratigraphic markers. The GPR survey may improve the reconstruction of the depositional environments through the recognition of massive and unconsolidated sand deposits within unit A and B (Holocene). The stratigraphic framework was also improved through the recognition of the discontinuity surface between Units C and D. Keywords: radar facies, stratigraphy, Tertiary to Quatenary, Subi Kecil Island Pencitraan endapan bawah permukaan Tersier sampai Kuarter di pantai Pulau Subi Kecil, Natuna, Propinsi Riau Kepulauan, telah dilakukan dengan “Ground Penetrating Radar (GPR). Survey GPR dilakukan menggunakan SIR 20 GSSI dengan antenna 200 MHz, 40 MHz da MLF 3200. Data GPR diproses mengunakan perangkat lunak Radan GSSI untuk Window NTTM. Citra Radar di daerah penelitian dapat dibagi menjadi reflektor paralel, sub paralel, chaotik, oblik, undulasi dan bebas refleksi. Kalibrasi telah dilakukan dengan kondisi geologi sepanjang pantai (tebing dan singkapan batuan). Unit A merupakan lapisan paling atas, dicirikan oleh reflektor parallel yang menerus dan tidak menerus, reflektor kuat, amplitudo tinggi dan ditafsirkan sebagai endapan alluvium. Di bawah unit A adalah unit B yang dicirikan oleh reflektor sub paralel yang menerus sampai tidak menerus, chaotic, hiperbolik, dengan reflektor kuat dan amplitudo tinggi. Unit C dan D (Mio-Oligosen) ditutupi oleh unit B yang dicirikan oleh fasies reflektor chaotic, bebas reflektor, dan secara lokal pararel tidak menerus, miring dan hiperbolik, dapat dikorelasikan dengan pasir padat pada tebing sebagai endapan dekat pantai. Citra GPR memperlihatkan rekonstruksi lingkungan pengendapan melalui pengenalan pasir padat dan pasir lepas pada unit A dan B (Holosen). Kerangka stratigrafi akan lebih baik melalui pengenalan ketidak menerusan lapisan antara unit C dan D. Kata kunci: fasies radar, stratigrafi, Tersier sampai Kuarter, Pulau Subi Kecil


2002 ◽  
Vol 81 (1) ◽  
pp. 27-37 ◽  
Author(s):  
R.L. Van Dam

AbstractGround-penetrating radar data from a regular grid are used to study the internal structure and development of a 9-m high aeolian river dune in the Dutch Rhine-Meuse delta. The purpose of this investigation was to image the internal sedimentary structures to better understand the development of these aeolian river dunes. Three radar facies can be recognised in the GPR sections. Radar facies 1 has a maximum thickness of 5 to 6 m and is characterised by dipping, parallel reflections with a maximum length of at least 20 m. The reflections from perpendicular sections, analysed using closed-loop correlation in 3-D-interpretation software, form eastward dipping (14° maximum) surfaces. Radar facies 2 is one continuous, sub-horizontal reflection. This high amplitude reflection is most probably caused by a thin organic horizon. Radar facies 3 has a thickness of 3 to 4 m and is made up of sets of short, predominantly eastward to north-eastward dipping reflections separated by rather continuous, sub-horizontal reflections. The eastward dipping surfaces in radar facies 1 are foresets of a dune that was deposited by prevailing westerly winds in the Younger Dryas, the last cold period in the Pleistocene. During the Early Holocene, an increasing vegetation cover stabilised the dune and formed a thin organic horizon. Subsequent resumption of dune forming processes led to the formation of radar facies 3 on top of the vegetated Pleistocene dune. Sedimentation by small dunes, partly eroding each other, led to sets of cross-stratification separated by bounding surfaces. The results suggest a small change in palaeo wind direction.


2021 ◽  
Vol 13 (7) ◽  
pp. 1387
Author(s):  
Chao Li ◽  
Jinhai Zhang

The high-frequency channel of lunar penetrating radar (LPR) onboard Yutu-2 rover successfully collected high quality data on the far side of the Moon, which provide a chance for us to detect the shallow subsurface structures and thickness of lunar regolith. However, traditional methods cannot obtain reliable dielectric permittivity model, especially in the presence of high mix between diffractions and reflections, which is essential for understanding and interpreting the composition of lunar subsurface materials. In this paper, we introduce an effective method to construct a reliable velocity model by separating diffractions from reflections and perform focusing analysis using separated diffractions. We first used the plane-wave destruction method to extract weak-energy diffractions interfered by strong reflections, and the LPR data are separated into two parts: diffractions and reflections. Then, we construct a macro-velocity model of lunar subsurface by focusing analysis on separated diffractions. Both the synthetic ground penetrating radar (GPR) and LPR data shows that the migration results of separated reflections have much clearer subsurface structures, compared with the migration results of un-separated data. Our results produce accurate velocity estimation, which is vital for high-precision migration; additionally, the accurate velocity estimation directly provides solid constraints on the dielectric permittivity at different depth.


2018 ◽  
Vol 66 ◽  
pp. 01001 ◽  
Author(s):  
Zenon Pilecki

The shallow historic exploitation of Zn-Pb/Fe ore deposits as well as hard coal has generated many discontinuous deformations on the terrain surface in the Upper Silesian Coal Basin/Poland. Discontinuous deformations occur in different forms as sinkholes, synclines, cracks, faults or ditches. The basic cause of their occurrence is the presence of void and loosened zones in the shallow subsurface. If the appropriate conditions arise, the sinkhole process begins to move upwards and may cause a discontinuous deformation on the terrain surface. Typically, geophysical methods are used for void and loosened zone identification. The most effective methods are gravimetric, seismic, electric resistivity and ground penetrating radar (GPR). Geophysical testing, requires distinct changes in the physical properties in the rock mass. The identified geophysical anomalies should be verified by control borehole and borehole tests to confirm the presence of the void and loosened zones in the rock mass. The results of control drilling and borehole tests determine the need to apply treatment works. In order to assess the threat of the occurrence of discontinuous deformations in the areas of historical shallow mining in Upper Silesia, a classification system based on geophysical tests has also been developed.


2003 ◽  
Vol 75 (2) ◽  
pp. 235-248 ◽  
Author(s):  
Dilce F. Rossetti

The geological characterization of shallow subsurface Neogene deposits in northeastern Pará State using Ground Penetrating Radar (GPR) revealed normal and reverse faults, as well as folds, not yet well documented by field studies. The faults are identified mostly by steeply-dipping reflections that sharply cut the nearby reflections causing bed offsets, drags and rollovers. The folds are recognized by reflections that are highly undulating, configuring broad concave and convex-up features that are up to 50 m wide and 80 to 90 ns deep. These deformation structures are mostly developed within deposits of Miocene age, though some of the faults might continue into younger deposits as well. Although the studied GPR sections show several diffractions caused by trees, differential degrees of moisture, and underground artifacts, the structures recorded here can not be explained by any of these ''noises''. The detailed analysis of the GPR sections reveals that they are attributed to bed distortion caused by brittle deformation and folding. The record of faults and folds are not widespread in the Neogene deposits of the Bragantina area. These GPR data are in agreement with structural models, which have proposed a complex evolution including strike-slip motion for this area from the Miocene to present.


2021 ◽  
Author(s):  
Wolf-Stefan Benedix ◽  
Dirk Plettemeier ◽  
Christoph Statz ◽  
Yun Lu ◽  
Ronny Hahnel ◽  
...  

<p>The WISDOM ground-penetrating radar aboard the 2022 ESA-Roscosmos Rosalind-Franklin ExoMars Rover will probe the shallow subsurface of Oxia Planum using electromagnetic waves. A dual-polarized broadband antenna assembly transmits the WISDOM signal into the Martian subsurface and receives the return signal. This antenna assembly has been extensively tested and characterized w.r.t. the most significant antenna parameters (gain, pattern, matching). However, during the design phase, these parameters were simulated or measured without the environment, i.e., in the absence of other objects like brackets, rover vehicle, or soil. Some measurements of the rover's influence on the WISDOM data were performed during the instrument's integration.</p><p>It was shown that the rover structure and close surroundings in the near-field region of the WISDOM antenna assembly have a significant impact on the WISDOM signal and sounding performance. Hence, it is essential to include the simulations' environment, especially with varying surface and underground.</p><p>With this contribution, we outline the influences of rover and ground on the antenna's pattern and particularly on the footprint. We employ a 3D field solver with a complete system model above different soil types, i.e., subsurface materials with various combinations of permittivity and conductivity.</p>


2018 ◽  
Vol 10 (9) ◽  
pp. 1417 ◽  
Author(s):  
Byeongjin Park ◽  
Jeongguk Kim ◽  
Jaesun Lee ◽  
Man-Sung Kang ◽  
Yun-Kyu An

Ground-penetrating radar (GPR) has been widely used to detect subsurface objects, such as hidden cavities, buried pipes, and manholes, owing to its noncontact sensing, rapid scanning, and deeply penetrating remote-sensing capabilities. Currently, GPR data interpretation depends heavily on the experience of well-trained experts because different types of underground objects often generate similar GPR reflection features. Moreover, reflection visualizations that were obtained from field GPR data for urban roads are often weak and noisy. This study proposes a novel instantaneous phase analysis technique to address these issues. The proposed technique aims to enhance the visibility of underground objects and provide objective criteria for GPR data interpretation so that the objects can be automatically classified without expert intervention. The feasibility of the proposed technique is validated both numerically and experimentally. The field test utilizes rarely available GPR data for urban roads in Seoul, South Korea and demonstrates that the technique allows for successful visualization and classification of three different types of underground objects.


Sign in / Sign up

Export Citation Format

Share Document